scispace - formally typeset
Search or ask a question
Author

M. Halpern

Other affiliations: University of British Columbia
Bio: M. Halpern is an academic researcher from Princeton University. The author has contributed to research in topics: Cosmic microwave background & CMB cold spot. The author has an hindex of 5, co-authored 5 publications receiving 6664 citations. Previous affiliations of M. Halpern include University of British Columbia.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, BH density, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) was proposed to fit the three-year WMAP temperature and polarization data.
Abstract: A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits not only the three year WMAP temperature and polarization data, but also small scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best fit values for cosmological parameters for the power-law flat LCDM model are (Omega_m h^2, Omega_b h^2, h, n_s, tau, sigma_8) = 0.1277+0.0080-0.0079, 0.02229+-0.00073, 0.732+0.031-0.032, 0.958+-0.016, 0.089+-0.030, 0.761+0.049-0.048). The three year data dramatically shrink the allowed volume in this six dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, the WMAP data_alone_ require dark matter, and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n_s=1, r=0). Models that suppress large-scale power through a running spectral index or a large-scale cut-off in the power spectrum are a better fit to the WMAP and small scale CMB data than the power-law LCDM model: however, the improvement in the fit to the WMAP data is only Delta chi^2 = 3 for 1 extra degree of freedom. The combination of WMAP and other astronomical data yields significant constraints on the geometry of the universe, the equation of state of the dark energy, the gravitational wave energy density, and neutrino properties. Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps.

6,002 citations

01 Jan 2003
TL;DR: In this paper, the authors use the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data, to explore the parameter space of inflationary models that is consistent with the WMAP data.
Abstract: We confront predictions of inflationary scenarios with the Wilkinson Microwave Anisotropy Probe (WMAP) data, in combination with complementary small-scale cosmic microwave background (CMB) measurements and large-scale structure data. The WMAP detection of a large-angle anticorrelation in the temperature-polarization cross-power spectrum is the signature of adiabatic superhorizon fluctuations at the time of decoupling. The WMAP data are described by pure adiabatic fluctuations: we place an upper limit on a correlated cold dark matter (CDM) isocurvature component. Using WMAP constraints on the shape of the scalar power spectrum and the amplitude of gravity waves, we explore the parameter space of inflationary models that is consistent with the data. We place limits on inflationary models; for example, a minimally coupled �� 4 is disfavored at more than 3 � using WMAP data in combination with smaller scale CMB and large-scale structure survey data. The limits on the primordial parameters using WMAP data alone are nsðk0 ¼ 0:002 Mpc � 1 Þ¼ 1:20 þ0:12 � 0:11 , dns=d ln k ¼� 0:077 þ0:050 � 0:052 , Aðk0 ¼ 0:002 Mpc � 1 Þ¼ 0:71 þ0:10 � 0:11 (68% CL), and rðk0 ¼ 0:002 Mpc � 1 Þ < 1:28 (95% CL). Subject headings: cosmic microwave background — cosmology: observations — early universe

802 citations

01 Jan 2003
TL;DR: In this article, the amplitude of non-Gaussian primordial fluctuations in the WMAP 1 yr cosmic microwave background sky maps has been shown to be consistent with the Gaussianity of the CMB.
Abstract: We present limits to the amplitude of non-Gaussian primordial fluctuations in the WMAP 1 yr cosmic microwave background sky maps. A nonlinear coupling parameter, fNL, characterizes the amplitude of a quadratic term in the primordial potential. We use two statistics: one is a cubic statistic which measures phase correlations of temperature fluctuations after combining all configurations of the angular bispectrum. The other uses the Minkowski functionals to measure the morphology of the sky maps. Both methods find the WMAP data consistent with Gaussian primordial fluctuations and establish limits, � 58 < fNL < 134, at 95% confidence. There is no significant frequency or scale dependence of fNL. The WMAP limit is 30 times better than COBE and validates that the power spectrum can fully characterize statistical properties of CMB anisotropy in the WMAP data to a high degree of accuracy. Our results also validate the use of a Gaussian theory for predicting the abundance of clusters in the local universe. We detect a point-source contribution to the bispectrum at 41 GHz, bsrc ¼ð 9:5 � 4:4 Þ� 10 � 5 lK 3 sr 2 , which gives a power spectrum from point sources of csrc ¼ð 15 � 6 Þ� 10 � 3 lK 2 sr in thermodynamic temperature units. This value agrees well with independent estimates of source number counts and the power spectrum at 41 GHz, indicating that bsrc directly measures residual source contributions. Subject headings: cosmic microwave background — cosmology: observations — early universe — galaxies: clusters: general — large-scale structure of universe The Gaussianity of the primordial fluctuations is a key assumption of modern cosmology, motivated by simple models of inflation. Statistical properties of the primordial fluctuations are closely related to those of the cosmic microwave background (CMB) radiation anisotropy; thus, a measurement of non-Gaussianity of the CMB is a direct test of the inflation paradigm. If CMB anisotropy is Gaussian,

38 citations

01 Jan 2003
TL;DR: In this paper, the authors compare the Wilkinson Microwave Anisotropy Probe (WMAP) and other complementary data sets to theoretical models to characterize the statistical properties of the microwave background sky.
Abstract: We describe our methodology for comparing the Wilkinson Microwave Anisotropy Probe (WMAP )m easurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models. The unprecedented quality of the WMAP data and the tight constraints on cosmological parameters that are derived require a rigorous analysis so that the approximations made in the modeling do not lead to significant biases. We describe our use of the likelihood function to characterize the statistical properties of the microwave background sky. We outline the use of the Monte Carlo Markov Chains to explore the likelihood of the data given a model to determine the best-fit cosmological parameters and their uncertainties. We add to the WMAP data the ‘e700 Cosmic Background Imager (CBI) and Arcminute Cosmology Bolometer Array Receiver (ACBAR) measurements of the CMB, the galaxy power spectrum at z � 0o btained from the Two-Degree Field Galaxy Redshift Survey (2dFGRS), and the matter power spectrum at z � 3a s measured with the Ly� forest. These last two data sets complement the CMB measurements by probing the matter power spectrum of the nearby universe. Combining CMB and 2dFGRS requires that we include in our analysis a model for galaxy bias, redshift distortions, and the nonlinear growth of structure. We show how the statistical and systematic uncertainties in the model and the data are propagated through the full analysis. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — methods: data analysis — methods: statistical

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the design, first observing season, and analysis of data from a new prototype millimeter-wave interferometer, MINT, which consists of four 145 GHz SIS mixers operating in double-sideband mode in a compact heterogeneous configuration.
Abstract: We report on the design, first observing season, and analysis of data from a new prototype millimeter-wave interferometer, MINT. MINT consists of four 145 GHz SIS mixers operating in double-sideband mode in a compact heterogeneous configuration. The signal band is subdivided by a monolithic channelizer, after which the correlations between antennas are performed digitally. The typical receiver sensitivity in a 2 GHz band is 1.4 mK s1/2. The primary beams are 045 and 030 FWHM, with fringe spacing as small as 01. MINT observed the cosmic microwave background (CMB) from Cerro Toco, in the Chilean Altiplano. The site quality at 145 GHz is good, with median nighttime atmospheric temperature of 9 K at zenith (exclusive of the CMB). Repeated observations of Mars, Jupiter, and a telescope-mounted calibration source establish the phase and magnitude stability of the system. MINT is the first interferometer dedicated to CMB studies to operate above 50 GHz. The same type of system can be used to probe the Sunyaev-Zel'dovich effect in galaxy clusters near the SZ null at 217 GHz. We give the essential features of MINT and present an analysis of sideband-separated, digitally sampled data recorded by the array. Based on 215 hours of data taken in late 2001, we set an upper limit on the CMB anisotropy in a band of width ?? = 700 around ? = 1540 of ?T < 105??K (95% confidence). Increased sensitivity can be achieved with more integration time, greater bandwidth, and more elements.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations

Journal ArticleDOI
TL;DR: In this article, the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data were used to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,904 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmology data sets.
Abstract: We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background (CMB) anisotropy, the baryon acoustic oscillation (BAO) scale, and the Hubble constant, the matter and energy densities, bh 2 , ch 2 , and , are each determined to a precision of 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to k = 0.0027 +0.0039 0.0038 ; the summed mass of neutrinos is limited to P m < 0.44 eV (95% CL); and the number of relativistic species is found to lie within Ne = 3.84±0.40, when the full data are analyzed. The joint constraint on Ne and the primordial helium abundance, YHe, agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev‐Zel’dovich eect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe. Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter, space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes

5,488 citations