scispace - formally typeset
Search or ask a question
Author

M. Hamon

Bio: M. Hamon is an academic researcher from University of Paris. The author has contributed to research in topics: Receptor & Inhibitory postsynaptic potential. The author has an hindex of 15, co-authored 35 publications receiving 2430 citations. Previous affiliations of M. Hamon include Académie Nationale de Médecine & Paris Descartes University.

Papers
More filters
Journal Article
TL;DR: The results show that data from published knowledge can be used to provide reliable, patient level, automated risk assessment, potentially reducing the cognitive burden on physicians and helping policy makers better prepare for future needs.
Abstract: Facing the rapidly spreading novel coronavirus disease (COVID-19), evidence to inform decision-making at both the clinical and policy-making level is highly needed. Based on the results of a study by Petrilli et al, we have developed a calculator using patient data at admission to predict the risk of critical illness (intensive care unit admission, use of mechanical ventilation, discharge to hospice, or death). We report a retrospective validation of the risk calculator on 145 consecutive patients admitted with COVID-19 to a single hospital in Israel. Of the 18 patients with critical illness, 17 were correctly identified by the model(sensitivity: 94.4%, 95% CI, 72.7% to 99.9%; specificity: 81.9%, 95% CI, 74.1% to 88.2%). Of the 127 patients with non-critical illness, 104 were correctly identified. This, despite considerable differences between the original and validation study populations. Our results show that data from published knowledge can be used to provide reliable, patient level, automated risk assessment, potentially reducing the cognitive burden on physicians and helping policy makers better prepare for future needs.

712 citations

Journal Article
TL;DR: The peptide cholecystokinin has been shown to mediate pancreatic secretion and contraction of gallbladder and was described in the mammalian central nervous system (CNS) as a gastrin-like peptide.
Abstract: The peptide cholecystokinin (CCK)2was originally discovered in the gastrointestinal tract ([Ivy and Oldberg, 1928][1]) and has been shown to mediate pancreatic secretion and contraction of gallbladder. Then, CCK was described in the mammalian central nervous system (CNS) as a gastrin-like

384 citations

Journal ArticleDOI
TL;DR: It is reported that mice deficient for 5-HTT (5-HTt(-/-)) developed less hypoxic pulmonary hypertension and vascular remodeling than paired 5- HTT(+/+) controls, and this data further support a key role of 5-htT in hypoxia-induced pulmonary vascular SMC proliferation and pulmonary hypertension.
Abstract: Hypoxia is a well-recognized stimulus for pulmonary blood vessel remodeling and pulmonary hypertension development. One mechanism that may account for these effects is the direct action of hypoxia on the expression of specific genes involved in vascular smooth muscle cell (SMC) proliferation. Previous studies demonstrated that the serotonin (5-hydroxytryptamine; 5-HT) transporter (5-HTT) mediates the mitogenic activity of 5-HT in pulmonary vascular SMCs and is overexpressed during hypoxia. Thus, 5-HT-related mitogenic activity is increased during hypoxia. Here, we report that mice deficient for 5-HTT (5-HTT–/–) developed less hypoxic pulmonary hypertension and vascular remodeling than paired 5-HTT+/+ controls. When maintained under normoxia, 5-HTT–/–-mutant mice had normal hemodynamic parameters, low blood 5-HT levels, deficient platelet 5-HT uptake, and unchanged blood levels of 5-hydroxyindoleacetic acid, a metabolite of 5-HT. After exposure to 10% O2 for 2 or 5 weeks, the number and medial wall thickness of muscular pulmonary vessels were reduced in hypoxic 5-HTT–/– mice as compared with wild-type paired controls. Concomitantly, right ventricular systolic pressure was lower and right ventricle hypertrophy less marked in the mutant mice. This occurred despite potentiation of acute hypoxic pulmonary vasoconstriction in the 5-HTT–/– mice. These data further support a key role of 5-HTT in hypoxia-induced pulmonary vascular SMC proliferation and pulmonary hypertension.

326 citations

Journal ArticleDOI
TL;DR: A link between 5-HTT and the development of cardiac fibrosis and valvulopathy in vivo is established, and 5- HTT-KO mice represent an especially relevant model for studying the mechanisms by which5-HT induces valvULopathy.
Abstract: Background— Serotonin (5-hydroxytryptamine; 5-HT) overproduction is responsible for cardiac valvular disease in patients with carcinoid tumors. Reduced 5-HT inactivation is one proposed mechanism of the valvulopathy observed in individuals treated with the appetite suppressants fenfluramine and phentermine. One key protein limiting systemic availability of 5-HT is the 5-HT transporter (5-HTT) expressed by platelets and pulmonary vascular cells; 5-HTT is responsible for 5-HT uptake and subsequent inactivation of the amine passing through the lung. Here we investigated whether 5-HTT–deficient (5-HTT-KO) mice developed structural and/or functional cardiac abnormalities and valvulopathy. Methods and Results— Cardiac endothelial cells expressed large amounts of 5-HTT in wild-type mice. 5-HTT deficiency appeared to be associated with marked interstitial, perivascular, and valvular fibrosis as evidenced by staining of cardiac collagen in 5-HTT-KO mice. Histological analysis provided evidence for valvulopathy cha...

139 citations

Journal Article
TL;DR: Data indicated that postsynaptic 5-HT1A receptors were not responsible for the inhibitory effects of 8-OH-DPAT and ipsapirone injected in forebrain areas on the electrical activity of serotonergic neurons and the USV response in rats.
Abstract: Previous studies have shown that injection of 5-hydroxytryptamine (serotonin) receptor agonists in the dorsal raphe nucleus (DRN) to stimulate somatodendritic 5-HT1A autoreceptors or in the hippocampus to stimulate postsynaptic 5-HT1A receptors, induces anxiolytic-like effects in the rat. The mechanisms triggered by the latter treatment were investigated by measuring both the electrical activity of serotonergic DRN neurons and the anxiolytic response in rats receiving injections with 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) or ipsapirone into the dorsal hippocampus. Anxiety-related behavior was estimated by recording the time of ultrasonic vocalization (USV) due to electric foot shocks under standardized conditions. Intrahippocampal application of 8-OH-DPAT or ipsapirone produced a dose-dependent inhibition of the firing of serotonergic DRN neurons and of the shock-induced USV response. However, the range of efficient doses of 8-OH-DPAT via the intrahippocampal route (1-10 micrograms/rat) was larger than that using the i.v. route of injection (0.15-2.5 micrograms/rat). Furthermore, maximal inhibition of the firing of DRN serotonergic neurons occurred earlier when 8-OH-DPAT was injected i.v. (within 1-2 min) than when it was injected into the dorsal hippocampus (within 5 min). Interestingly, the injection of 8-OH-DPAT into the striatum, where 5-HT1A receptors are hardly detectable, or a lateral ventricle, also yielded dose-dependent reduction in both the firing rate of serotonergic DRN neurons and the USV response. Finally, local lesion with ibotenic acid to eliminate postsynaptic 5-HT1A receptors did not alter the inhibitory effects of intrahippocampal application of 8-OH-DPAT on the firing of serotonergic DRN neurons and the USV response. These data indicated that postsynaptic 5-HT1A receptors were not responsible for the inhibitory effects of 8-OH-DPAT and ipsapirone injected in forebrain areas on the electrical activity of serotonergic neurons and the USV response in rats. As shown by the autoradiographic labeling by [3H]8-OH-DPAT at distance from its injection site in the dorsal hippocampus, the diffusion of 5-HT1A receptor agonists (from injected areas in the forebrain to the DRN where they directly inhibit the electrical activity of serotonergic neurons) more likely accounted for their anxiolytic-like effects.

137 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A number of 5-HT receptor ligands are currently utilised, or are in clinical development, to reduce the symptoms of CNS dysfunction and the functional responses attributed to each receptor in the brain are reviewed.

3,074 citations

01 Jan 2015
TL;DR: The abstract should follow the structure of the article (relevance, degree of exploration of the problem, the goal, the main results, conclusion) and characterize the theoretical and practical significance of the study results.
Abstract: Summary) The abstract should follow the structure of the article (relevance, degree of exploration of the problem, the goal, the main results, conclusion) and characterize the theoretical and practical significance of the study results. The abstract should not contain wording echoing the title, cumbersome grammatical structures and abbreviations. The text should be written in scientific style. The volume of abstracts (summaries) depends on the content of the article, but should not be less than 250 words. All abbreviations must be disclosed in the summary (in spite of the fact that they will be disclosed in the main text of the article), references to the numbers of publications from reference list should not be made. The sentences of the abstract should constitute an integral text, which can be made by use of the words “consequently”, “for example”, “as a result”. Avoid the use of unnecessary introductory phrases (eg, “the author of the article considers...”, “The article presents...” and so on.)

1,229 citations

Journal ArticleDOI
TL;DR: The paradigmatic peptide somatostatin and its receptors are extensively reviewed in the light of in vivo targeting of neuroendocrine tumors and the role of the more recently described targeting peptides vasoactive intestinal peptides, gastrin-releasing peptide, and cholecystokinin/gastrin is discussed.
Abstract: During the past decade, proof of the principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been provided. The molecular basis for targeting rests on the in vitro observation that peptide receptors can be expressed in large quantities in certain tumors. The clinical impact is at the diagnostic level: in vivo receptor scintigraphy uses radiolabeled peptides for the localization of tumors and their metastases. It is also at the therapeutic level: peptide receptor radiotherapy of tumors emerges as a serious treatment option. Peptides linked to cytotoxic agents are also considered for therapeutic applications. The use of nonradiolabeled, noncytotoxic peptide analogs for long-term antiproliferative treatment of tumors appears promising for only a few tumor types, whereas the symptomatic treatment of neuroendocrine tumors by somatostatin analogs is clearly successful. The present review summarizes and critically evaluates the in vitro data on peptide and peptide receptor expression in human cancers. These data are considered to be the molecular basis for peptide receptor targeting of tumors. The paradigmatic peptide somatostatin and its receptors are extensively reviewed in the light of in vivo targeting of neuroendocrine tumors. The role of the more recently described targeting peptides vasoactive intestinal peptide, gastrin-releasing peptide, and cholecystokinin/gastrin is discussed. Other emerging and promising peptides and their respective receptors, including neurotensin, substance P, and neuropeptide Y, are introduced. This information relates to established and potential clinical applications in oncology.

1,090 citations

Journal ArticleDOI
TL;DR: The hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as the authors search for newer, more effective therapeutic interventions.
Abstract: Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

929 citations

Journal ArticleDOI
TL;DR: The present article focuses in particular upon the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research.

926 citations