scispace - formally typeset
Search or ask a question
Author

M. Ismail Gursoy

Bio: M. Ismail Gursoy is an academic researcher from Adıyaman University. The author has contributed to research in topics: Support vector machine & Principal component analysis. The author has an hindex of 2, co-authored 2 publications receiving 830 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this work, a versatile signal processing and analysis framework for Electroencephalogram (EEG) was proposed and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients.
Abstract: In this work, we proposed a versatile signal processing and analysis framework for Electroencephalogram (EEG). Within this framework the signals were decomposed into the frequency sub-bands using DWT and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients. Principal components analysis (PCA), independent components analysis (ICA) and linear discriminant analysis (LDA) is used to reduce the dimension of data. Then these features were used as an input to a support vector machine (SVM) with two discrete outputs: epileptic seizure or not. The performance of classification process due to different methods is presented and compared to show the excellent of classification process. These findings are presented as an example of a method for training, and testing a seizure prediction method on data from individual petit mal epileptic patients. Given the heterogeneity of epilepsy, it is likely that methods of this type will be required to configure intelligent devices for treating epilepsy to each individual's neurophysiology prior to clinical operation.

1,010 citations

Proceedings ArticleDOI
20 Apr 2011
TL;DR: In this paper, the power spectrum was obtained by applying Auto-Regressive Burg (AR-Burg) method to the EEG signals and the data obtained from the analysis of AR-burg was classified with Support Vector Machines (SVM).
Abstract: EEG signals contain a lot of information about brain functions.Wave forms of EEG signs are similar to other forms of brain signs.In this study, firstly power spectrum was obtained by applying Auto-Regressive Burg (AR-Burg) method to the EEG signals. The data obtained from the analysis of AR-Burg was classified with Support Vector Machines (SVM). Classification achivements were investigated for some kernel functions used in SVM. Regularization parameter and kernel parameter that increase the success of classification were calculated with a novel approach Particle Swarm Optimization (PSO) technique. Such that; global best results for classification were searched by investigating optimum values. As a result of this study a new algorithmic approach presented for the diagnosis of epilepsy patients.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Practical suggestions on the selection of many hyperparameters are provided in the hope that they will promote or guide the deployment of deep learning to EEG datasets in future research.
Abstract: Objective Electroencephalography (EEG) analysis has been an important tool in neuroscience with applications in neuroscience, neural engineering (e.g. Brain-computer interfaces, BCI's), and even commercial applications. Many of the analytical tools used in EEG studies have used machine learning to uncover relevant information for neural classification and neuroimaging. Recently, the availability of large EEG data sets and advances in machine learning have both led to the deployment of deep learning architectures, especially in the analysis of EEG signals and in understanding the information it may contain for brain functionality. The robust automatic classification of these signals is an important step towards making the use of EEG more practical in many applications and less reliant on trained professionals. Towards this goal, a systematic review of the literature on deep learning applications to EEG classification was performed to address the following critical questions: (1) Which EEG classification tasks have been explored with deep learning? (2) What input formulations have been used for training the deep networks? (3) Are there specific deep learning network structures suitable for specific types of tasks? Approach A systematic literature review of EEG classification using deep learning was performed on Web of Science and PubMed databases, resulting in 90 identified studies. Those studies were analyzed based on type of task, EEG preprocessing methods, input type, and deep learning architecture. Main results For EEG classification tasks, convolutional neural networks, recurrent neural networks, deep belief networks outperform stacked auto-encoders and multi-layer perceptron neural networks in classification accuracy. The tasks that used deep learning fell into five general groups: emotion recognition, motor imagery, mental workload, seizure detection, event related potential detection, and sleep scoring. For each type of task, we describe the specific input formulation, major characteristics, and end classifier recommendations found through this review. Significance This review summarizes the current practices and performance outcomes in the use of deep learning for EEG classification. Practical suggestions on the selection of many hyperparameters are provided in the hope that they will promote or guide the deployment of deep learning to EEG datasets in future research.

777 citations

Journal ArticleDOI
TL;DR: This review discusses various feature extraction methods and the results of different automated epilepsy stage detection techniques in detail, and briefly presents the various open ended challenges that need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.
Abstract: Epilepsy is an electrophysiological disorder of the brain, characterized by recurrent seizures. Electroencephalogram (EEG) is a test that measures and records the electrical activity of the brain, and is widely used in the detection and analysis of epileptic seizures. However, it is often difficult to identify subtle but critical changes in the EEG waveform by visual inspection, thus opening up a vast research area for biomedical engineers to develop and implement several intelligent algorithms for the identification of such subtle changes. Moreover, the EEG signals are nonlinear and non-stationary in nature, which contribute to further complexities related to their manual interpretation and detection of normal and abnormal (interictal and ictal) activities. Hence, it is necessary to develop a Computer Aided Diagnostic (CAD) system to automatically identify the normal and abnormal activities using minimum number of highly discriminating features in classifiers. It has been found that nonlinear features are able to capture the complex physiological phenomena such as abrupt transitions and chaotic behavior in the EEG signals. In this review, we discuss various feature extraction methods and the results of different automated epilepsy stage detection techniques in detail. We also briefly present the various open ended challenges that need to be addressed before a CAD based epilepsy detection system can be set-up in a clinical setting.

601 citations

Journal ArticleDOI
TL;DR: This work proposes a methodology for the automatic detection of normal, pre-ictal, and ictal conditions from recorded EEG signals and shows that the Fuzzy classifier was able to differentiate the three classes with a high accuracy of 98.1%.

534 citations

Proceedings Article
01 Jan 2016
TL;DR: In this paper, a deep recurrent convolutional network was proposed to learn robust representations from multi-channel EEG time-series, and demonstrated its advantages in the context of mental load classification task.
Abstract: One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.

456 citations

Journal ArticleDOI
TL;DR: A multiparadigm approach based on the integration of wavelets, nonlinear dynamics and chaos theory, and neural networks advanced by Adeli and associates is the most effective method for automated EEG-based diagnosis of epilepsy.
Abstract: Electroencephalography (EEG) is an important tool for studying the human brain activity and epileptic processes in particular. EEG signals provide important information about epileptogenic networks that must be analyzed and understood before the initiation of therapeutic procedures. Very small variations in EEG signals depict a definite type of brain abnormality. The challenge is to design and develop signal processing algorithms which extract this subtle information and use it for diagnosis, monitoring and treatment of patients with epilepsy. This paper presents a review of wavelet techniques for computer-aided seizure detection and epilepsy diagnosis with an emphasis on research reported during the past decade. A multiparadigm approach based on the integration of wavelets, nonlinear dynamics and chaos theory, and neural networks advanced by Adeli and associates is the most effective method for automated EEG-based diagnosis of epilepsy.

449 citations