scispace - formally typeset
Search or ask a question
Author

M. Ivill

Bio: M. Ivill is an academic researcher from University of Florida. The author has contributed to research in topics: Ferromagnetism & Spintronics. The author has an hindex of 15, co-authored 27 publications receiving 2112 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent results in developing improved control of growth, doping, and fabrication processes for ZnO devices with possible applications to ultraviolet (UV) light emitters, spin functional devices, gas sensors, transparent electronics, and surface acoustic wave devices is given in this article.

558 citations

Journal ArticleDOI
Stephen J. Pearton1, W. H. Heo1, M. Ivill1, David P. Norton1, T. Steiner 
TL;DR: A review of recent results on transition metal doping of electronic oxides such as ZnO, TiO 2, SnO2, BaTiO 3, Cu2O, SrTiO3 and KTaO3 is presented in this article.
Abstract: A review of recent results on transition metal doping of electronic oxides such as ZnO, TiO2, SnO2, BaTiO3, Cu2O, SrTiO3 and KTaO3 is presented. There is interest in achieving ferromagnetism with Curie temperatures above room temperature in such materials for applications in the field of spintronic devices, in which the spin of the carriers is exploited. The incorporation of several atomic per cent of the transition metals without creation of second phases appears possible under optimized synthesis conditions, leading to ferromagnetism. Pulsed laser deposition, reactive sputtering, molecular beam epitaxy and ion implantation have all been used to produce the oxide-based dilute magnetic materials. The mechanism is still under debate, with carrier-induced, double-exchange and bound magnetic polaron formation all potentially playing a role depending on the conductivity type and level in the material.

527 citations

Journal ArticleDOI
TL;DR: In this paper, the structure and magnetic properties of Co-doped ZnO films are discussed in relation to cobalt doping levels and growth conditions, and optical absorption measurements show a sequential increase in the Co+2 absorption peaks in these films, along with an almost linearly increasing bandgap with cobalt concentration.
Abstract: The structure and magnetic properties of Co-doped ZnO films are discussed in relation to cobalt doping levels and growth conditions Films were deposited by pulsed-laser deposition (PLD) from ZnO targets containing cobalt concentrations from 0 to 30?at% The structure of the films is examined by x-ray diffraction (XRD) and transmission electron microscopy (TEM), and optical absorption is used to infer the substitution of cobalt inside the ZnO lattice Magnetic properties are characterized by superconducting quantum interference device (SQUID) magnetometry Films doped with cobalt concentrations of a few per cent appear to be composed of two magnetic components: a paramagnetic component and a low-field ferromagnetic component Films doped with 30% cobalt show a larger FM signature at room temperature with clear hysteretic shape, but films grown at low pressure are plagued by the precipitation of metallic cobalt nanoparticles within the lattice which can be easily detected by XRD These particles are well oriented with the ZnO crystal structure By increasing the base pressure of the vacuum chamber to pressures above 1?10?5?Torr, metallic cobalt precipitates are undetectable in XRD scans, whereas the films still show an FM signature of ~008??B/Co Depositions in the presence of oxygen background gas at 002?mTorr decreases the magnetization The decreased magnetization with oxygen suggests that the activation of ferromagnetism depends on defects, such as oxygen vacancies, created during growth Optical absorption measurements show a sequential increase in the Co+2 absorption peaks in these films, along with an almost linearly increasing bandgap with cobalt concentration suggesting a large solubility of cobalt in ZnO Bright-field TEM imaging and electron diffraction do not show signs of precipitation; however, dark-field imaging shows circular areas of varying contrast which could be associated with cobalt precipitation Therefore, the possibility that ferromagnetism results from secondary phases cannot be ruled out

180 citations

Journal ArticleDOI
TL;DR: In this paper, pulsed-laser deposition on c-plane Al2O3 substrates were annealed at temperatures up to 600°C to produce n-type carrier concentrations in the range 7.5×1015−1.5 × 1020 cm−3.
Abstract: ZnO films grown by pulsed-laser deposition on c-plane Al2O3 substrates were annealed at temperatures up to 600 °C to produce n-type carrier concentrations in the range 7.5×1015–1.5×1020 cm−3. After high-dose (3×1016 cm−2) Mn implantation and subsequent annealing at 600 °C, all the films show n-type carrier concentrations in the range 2–5×1020 cm−3 and room temperature hysteresis in magnetization loops. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn, and that factors such as crystalline quality and residual defects play a role.

168 citations

Journal ArticleDOI
TL;DR: In this paper, an inverse correlation between magnetization and electron density as controlled by Sn-doping was found in films doped with Mn during pulsed laser deposition (PLD), suggesting that carrier concentration alone alone cannot explain the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role.
Abstract: ZnO is a very promising material for spintronics applications, with many groups reporting room-temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during pulsed laser deposition (PLD), we find an inverse correlation between magnetization and electron density as controlled by Sn-doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for ferromagnetism include the bound magnetic polaron model or exchange that is mediated by carriers in a spin-split impurity band derived from extended donor orbitals. The progress in ZnO nanowires is also reviewed. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for microlasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ∼−3 V, and a maximum transconductance of 0.3 mS/mm. Under ultraviolet (UV) illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ∼5 mS/mm. The channel mobility is estimated to be ∼3 cm2/Vss, comparable to that for thin film ZnO enhancement mode metal-oxide semiconductor field effect transistors (MOSFETs), and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination. The Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25°C, very low reverse currents, and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25°C to 150°C, the resistivity of nanorods treated in H2 at 400°C prior to measurement showed an activation energy of 0.089 eV and was insensitive to ambient used. By contrast, the conductivity of nanorods not treated in H2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors. Sensitive pH sensors using single ZnO nanowires have also been fabricated.

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: ZnO has received much attention over the past few years because it has a wide range of properties that depend on doping, including a range of conductivity from metallic to insulating (including n-type and p-type conductivity), high transparency, piezoelectricity, widebandgap semiconductivity, room-temperature ferromagnetism, and huge magneto-optic and chemical-sensing effects.

1,828 citations

Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations

Journal ArticleDOI
TL;DR: A review of defects in ZnO is presented in this paper, with an emphasis on the physical properties of point defects in bulk crystals, and the problem of acceptor dopants remains a key challenge.
Abstract: Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-t...

995 citations

Journal ArticleDOI
TL;DR: In this paper, the Williamson-Hall analysis and size-strain plot were used to study the individual contributions of crystallite sizes and lattice strain ϵ on the peak broadening of ZnO nanoparticles.
Abstract: ZnO nanoparticles were synthesized from chitosan and zinc chloride by a precipitation method. The synthesized ZnO nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray diffraction peak profile analysis, Scanning electron microscopy, Transmission electron microscopy and Photoluminescence. The X-ray diffraction results revealed that the sample was crystalline with a hexagonal wurtzite phase. We have investigated the crystallite development in ZnO nanoparticles by X-ray peak profile analysis. The Williamson–Hall analysis and size–strain plot were used to study the individual contributions of crystallite sizes and lattice strain ϵ on the peak broadening of ZnO nanoparticles. The parameters including strain, stress and energy density value were calculated for all the reflection peaks of X-ray diffraction corresponding to wurtzite hexagonal phase of ZnO lying in the range 20°–80° using the modified form of Williamson–Hall plots and size–strain plot. The results showed that the crystallite size estimated from Scherrer’s formula, Williamson–Hall plots and size–strain plot, and the particle size estimated from Transmission electron microscopy analysis are very much inter-correlated. Both methods, the X-ray diffraction and Transmission electron microscopy, provide less deviation between crystallite size and particle size in the present case.

980 citations