scispace - formally typeset
Search or ask a question
Author

M.J. Abedin

Bio: M.J. Abedin is an academic researcher from University of Malaya. The author has contributed to research in topics: Diesel fuel & Diesel engine. The author has an hindex of 22, co-authored 30 publications receiving 2060 citations. Previous affiliations of M.J. Abedin include Monash University, Clayton campus.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss comparative physicochemical properties of ethanol and gasoline and discuss different fuel composition, engine parameter and engine modification effects on NOx formation as well as mathematical approach for NOx prediction using ethanol.
Abstract: The stricter worldwide emission legislation and growing demands for lower fuel consumption and anthropogenic CO2 emission require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Ethanol fuel combined with gasoline provides a particularly promising and, at the same time, a challenging approach. Ethanol is widely used as an alternative fuel or an effective additive of gasoline due to the advantage of its high octane number and its self-sustaining concept, which can be supplied regardless of the fossil fuel. As a result, vast study has been carried out to study its effects on engine performance and emission. The first part of this article discusses prospect of fuel ethanol as a gasoline substitute. Then it discusses comparative physicochemical properties of ethanol and gasoline. The slight differences in properties between ethanol and gasoline fuels are enough to create considerable change to combustion system as well as behaviors of SI engines. These effects lead to several complex and interacting mechanisms, which make it difficult to identify the fundamentals of how ethanol affects NOx emission. After that, general NOx forming mechanisms are discussed to create a fundamental basis for further discussion. Finally, the article discusses different fuel composition, engine parameter and engine modification effects on NOx formation as well as mathematical approach for NOx prediction using ethanol.

327 citations

Journal ArticleDOI
TL;DR: In this article, two monophenolic antioxidants, 2, 6-di-tert-butyl-4methylphenol (BHA) and 2(3)-tert -butyl -4methoxy phenol(BHT), were added at 1000 ppm concentration to 20% PME (B20) to study their effect.
Abstract: Biodiesel is a clean-burning alternative fuel produced from renewable resources. However, it is susceptible to oxidative degradation due to autoxidation in the presence of oxygen, which hinders its widespread use. Antioxidant addition is a prospective solution to this problem. It is expected that antioxidants may affect the clean-burning characteristic of biodiesel. Palm biodiesel (PME) is the most used biodiesel in Malaysia. This paper presents an experimental investigation of the effect of antioxidant addition to palm biodiesel on engine performance and emission characteristics. PME was produced by transesterification using potassium hydroxide (KOH) as catalyst. Two monophenolic antioxidants, 2, 6-di-tert-butyl-4-methylphenol (BHA) and 2(3)-tert-butyl-4-methoxy phenol (BHT), were added at 1000 ppm concentration to 20% PME (B20) to study their effect. The addition of antioxidants increased oxidation stability without causing any significant negative effect on physicochemical properties. BHA showed greater capability to increase the stability of B20. A 42-kW, 1.8-L, four-cylinder diesel engine was used to carry out tests under conditions of constant load and varying speed. The results show that B20 and antioxidant-treated B20 produced 0.68–1.02% lower brake power (BP) and 4.03–4.71% higher brake specific fuel consumption (BSFC) compared to diesel. Both of the antioxidants reduced NOx by a mean of 9.8–12.6% compared to B20. However, compared to B20, mean increases in carbon monoxide (CO) and hydrocarbon (HC) emissions of 8.6–12.3% and 9.1–12.0%, respectively, were observed. The emission levels of the three pollutants were lower than those of diesel. Thus, B20 blends with added antioxidant can be used in diesel engines without any modifications.

277 citations

Journal ArticleDOI
TL;DR: In this article, the performance and emission parameters of a diesel engine run by both palm biodiesel-diesel and Calophyllum biodiesel -diesel blends were evaluated at high idling conditions.
Abstract: Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in many countries of the world production and use of biodiesel has gained popularity. In this research, biodiesel from palm and Calophyllum inophyllum oil has been produced using the trans-esterification process. Properties of the produced biodiesels were compared with the ASTM D6751 standard: biodiesel standard and testing methods. Density, kinematic viscosity, flash point, cloud point, pour point and calorific value, these are the six main physicochemical properties that were investigated. Both palm biodiesel and Calophyllum biodiesel were within the standard limits, so they both can be used as the alternative of diesel fuel. Furthermore, engine performance and emission parameters of a diesel engine run by both palm biodiesel–diesel and Calophyllum biodiesel–diesel blends were evaluated at high idling conditions. Brake specific fuel consumption increased for both the biodiesel–diesel blends compared to pure diesel fuel; however, at highest idling condition, this increase was almost negligible. Exhaust gas temperatures decreased as blend percentages increased for both the biodiesel–diesel blends. For low blend percentages increase in NOX emission was negligible but as blend percentages increase, emission increased significantly. CO and HC emission for both biodiesel–diesel blends were lower compared to pure diesel fuel. 20% Calophyllum biodiesel–diesel blends emitted lowest HC and CO emission.

163 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the BSFC, engine power, exhaust and noise emission characteristics of a combined palm and jatropha blend in a singlecylinder diesel engine at different engine speeds ranging from 1400 to 2200 rpm.
Abstract: An ever increasing drift of energy consumption, unequal geographical distribution of natural wealth and the quest for low carbon fuel for a cleaner environment are sparking off the production and use of biodiesels in many countries around the globe. In this work, palm biodiesel and jatropha biodiesel were produced from the respective crude vegetable oils through transesterification, and the different physicochemical properties of the produced biodiesels have been presented, and found to be acceptable according to the ASTM standard of biodiesel specification. This paper presents experimental results of the research carried out to evaluate the BSFC, engine power, exhaust and noise emission characteristics of a combined palm and jatropha blend in a single-cylinder diesel engine at different engine speeds ranging from 1400 to 2200 rpm. Though the PBJB5 and PBJB10 biodiesels showed a slightly higher BSFC than diesel fuel, all the measured emission parameters and noise emission were significantly reduced, except for NO emission. CO emissions for PBJB5 and PBJB10 were 9.53% and 20.49% lower than for diesel fuel. By contrast, HC emissions for PBJB5 and PBJB10 were 3.69% and 7.81% lower than for diesel fuel. The sound levels produced by PBJB5 and PBJB10 were also reduced by 2.5% and 5% compared with diesel fuel due to their lubricity and damping characteristics.

154 citations

Journal ArticleDOI
TL;DR: A review of the literature available concerning the energy balance of internal combustion engines operating on alternative fuels can be found in this paper, where the basic energy balance theory has been discussed in details along with the variations in energy balance approaches and terms.
Abstract: This paper reviews the literature available concerning the energy balance of internal combustion engines operating on alternative fuels. Global warming and energy crisis are among the most important issues that threaten the peaceful existence of the man-kind. More usage of alternative fuels and energy loss minimization from automotive engines can be an effective solution to this issue. The energy balance analysis gives useful information on the distribution of supplied fuel energy in the engine systems and identifies the avoidable losses of the real engine process with respect to ideal process. It is a very widely used tool, mostly used for the layout of the engine components. The basic energy balance theory has been discussed in details along with the variations in energy balance approaches and terms. The wall energy loss may vary to a great extent depending on the selection of heat transfer correlations. The theoretical energy balance also explored in this paper with help of thermodynamic models. There are some significant variations observed in energy balance when the engine operating fuel is changed and devices like turbocharger, supercharger etc. are used to boost the intake air pressure. The review extends to the energy balance study of low heat rejection engines (LHR) as well as the effects of engine variables and design factors on energy balance.

149 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The use of non-edible plant oils is very significant because of the tremendous demand for edible oils as food source as mentioned in this paper, however, edible oils’ feedstock costs are far expensive to be used as fuel.
Abstract: World energy demand is expected to increase due to the expanding urbanization, better living standards and increasing population. At a time when society is becoming increasingly aware of the declining reserves of fossil fuels beside the environmental concerns, it has become apparent that biodiesel is destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. There are different potential feedstocks for biodiesel production. Non-edible vegetable oils which are known as the second generation feedstocks can be considered as promising substitutions for traditional edible food crops for the production of biodiesel. The use of non-edible plant oils is very significant because of the tremendous demand for edible oils as food source. Moreover, edible oils’ feedstock costs are far expensive to be used as fuel. Therefore, production of biodiesel from non-edible oils is an effective way to overcome all the associated problems with edible oils. However, the potential of converting non-edible oil into biodiesel must be well examined. This is because physical and chemical properties of biodiesel produced from any feedstock must comply with the limits of ASTM and DIN EN specifications for biodiesel fuels. This paper introduces non-edible vegetable oils to be used as biodiesel feedstocks. Several aspects related to these feedstocks have been reviewed from various recent publications. These aspects include overview of non-edible oil resources, advantages of non-edible oils, problems in exploitation of non-edible oils, fatty acid composition profiles (FAC) of various non-edible oils, oil extraction techniques, technologies of biodiesel production from non-edible oils, biodiesel standards and characterization, properties and characteristic of non-edible biodiesel and engine performance and emission production. As a conclusion, it has been found that there is a huge chance to produce biodiesel from non-edible oil sources and therefore it can boost the future production of biodiesel.

1,017 citations

Journal ArticleDOI
TL;DR: The present review aims to summarize the recent advances in the fundamental and application understanding of ILs, and introduces the structures and properties of typical ILs.
Abstract: Ionic liquids (ILs) offer a wide range of promising applications because of their much enhanced properties. However, further development of such materials depends on the fundamental understanding of their hierarchical structures and behaviors, which requires multiscale strategies to provide coupling among various length scales. In this review, we first introduce the structures and properties of these typical ILs. Then, we introduce the multiscale modeling methods that have been applied to the ILs, covering from molecular scale (QM/MM), to mesoscale (CG, DPD), to macroscale (CFD for unit scale and thermodynamics COSMO-RS model and environmental assessment GD method for process scale). In the following section, we discuss in some detail their applications to the four scales of ILs, including molecular scale structures, mesoscale aggregates and dynamics, and unit scale reactor design and process design and optimization of typical IL applications. Finally, we address the concluding remarks of multiscale strat...

517 citations

Journal ArticleDOI
15 Feb 2020-Fuel
TL;DR: In this article, a comprehensive assessment of various feedstocks used for different generation biodiesel production with their advantages and disadvantages are also explained, and different production methods for biodiesel with yield calculation is also explained.
Abstract: Continuous increase in world’s population, rapid industrialization, urbanization, and economic growth force for continuously increase in fossil fuel consumption to meet growing energy demand. Continuous emissions from burning of fossil fuel will create the need to find the appropriate and sustainable replacement for fossil fuels. Biodiesel is appropriate alternate solution for diesel engine due to its renewable, non-toxic and eco-friendly nature. According to EASAC biodiesel evolution is classified into four generations. Cultivation in arid and semi arid land or water, crop yield, effect on food supply, yield of biodiesel, energy content, carbon-neutral economy, easy availability, and economic viable are the main factors behind the evolution of biodiesel generations. This article highlights a comprehensive assessment of various feedstocks used for different generation biodiesel production with their advantages and disadvantages. Different production methods for biodiesel with yield calculation are also explained. Algae based third generation feedstocks are better in comparison with first and second generation due to their high energy content, high oil content and less polluting nature. Forth generation of biodiesel produced from synthetic biology, which will enhance the various physiochemical properties of biodiesel to achieve carbon neutral economy. Among the all biodiesel production processes; transesterification is the most suitable process, because it produces biodiesel of high yield, comparable properties with diesel. This process is also feasible as per economic point of view. The energy demand of future can be met by the blending of different generation oil feedstocks.

505 citations

Journal ArticleDOI
TL;DR: The most common process in the production of biodiesel is transesterification, and using a methanol-ethanol mixture will combine the advantages of both alcohols in biodiesel production.
Abstract: In recent years, biodiesel has attracted significant attention from researchers, governments, and industries as a renewable, biodegradable, and non-toxic fuel. However, several feedstocks have been proven impractical or infeasible because of their extremely high cost due to their usage primarily as food resources. Waste cooking oil (WCO) is considered the most promising biodiesel feedstock despite its drawbacks, such as its high free fatty acid (FFA) and water contents. This review paper provides a comprehensive overview of the pre-treatment and the usage of WCO for the production of biodiesel using several methods, different types of reactors, and various types and amounts of alcohol and catalysts. The most common process in the production of biodiesel is transesterification, and using a methanol–ethanol mixture will combine the advantages of both alcohols in biodiesel production. In addition, this paper highlights the purification and analysis of the produced biodiesel, operating parameters that highly affect the biodiesel yield, and several economic studies. This review suggests that WCO is a promising feedstock in biodiesel production.

484 citations