scispace - formally typeset
Search or ask a question
Author

M. J. Carson

Bio: M. J. Carson is an academic researcher from Harvard University. The author has contributed to research in topics: Gene product & Membrane protein. The author has an hindex of 3, co-authored 3 publications receiving 4863 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The tight regulation of the PBAD promoter is exploited to study the phenotypes of null mutations of essential genes and the use of pBAD vectors as an expression system is explored.
Abstract: We have constructed a series of plasmid vectors (pBAD vectors) containing the PBAD promoter of the araBAD (arabinose) operon and the gene encoding the positive and negative regulator of this promoter, araC. Using the phoA gene and phoA fusions to monitor expression in these vectors, we show that the ratio of induction/repression can be 1,200-fold, compared with 50-fold for PTAC-based vectors. phoA expression can be modulated over a wide range of inducer (arabinose) concentrations and reduced to extremely low levels by the presence of glucose, which represses expression. Also, the kinetics of induction and repression are very rapid and significantly affected by the ara allele in the host strain. Thus, the use of this system which can be efficiently and rapidly turned on and off allows the study of important aspects of bacterial physiology in a very simple manner and without changes of temperature. We have exploited the tight regulation of the PBAD promoter to study the phenotypes of null mutations of essential genes and explored the use of pBAD vectors as an expression system.

4,997 citations

Journal ArticleDOI
TL;DR: The ftsQ gene is one of several genes thought to be specifically required for septum formation in Escherichia coli and it is concluded that FtsQ is a simple cytoplasmic membrane protein with a approximately 25-amino-acid cytopLasmic domain and a approximately 225-amINO-acid periplasmicdomain.
Abstract: The ftsQ gene is one of several genes thought to be specifically required for septum formation in Escherichia coli. Published work on the cell division behavior of ftsQ temperature-sensitive mutants suggested that the FtsQ product is required throughout the whole process of septum formation. Here we provide additional support for this hypothesis based on microscopic observations of the cell division defects resulting from insertional and temperature-sensitive mutations in the ftsQ gene, and constitutive overexpression of its gene product. On the basis of the published, predicted amino acid sequence of the FtsQ protein and our analysis of fusion proteins of the FtsQ protein to bacterial alkaline phosphatase, we conclude that FtsQ is a simple cytoplasmic membrane protein with a approximately 25-amino-acid cytoplasmic domain and a approximately 225-amino-acid periplasmic domain. We estimate that the FtsQ protein is present at about 22 copies per cell.

145 citations

Journal ArticleDOI
TL;DR: Alkaline phosphatase fusions have been used to analyse plasmid- or phage-carried genes from the two-minute region of the Escherichia coli chromosome to reveal bacteriophage lambda carries two genes for cell envelope proteins, lom and bor, that are expressed in lysogens and probably contribute to the pathogenicity of its E. coli host.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s), which should be widely useful, especially in genome analysis of E. coli and other bacteria.
Abstract: We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.

14,389 citations

Journal ArticleDOI
TL;DR: These mutants—the ‘Keio collection’—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome‐wide testing of mutational effects in a common strain background, E. coli K‐12 BW25113.
Abstract: We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

7,428 citations

Journal ArticleDOI
TL;DR: Investigation of factors that affect stability, growth, and induction of T7 expression strains in shaking vessels led to the recognition that sporadic, unintended induction of expression in complex media, previously reported by others, is almost certainly caused by small amounts of lactose.

5,395 citations

Journal ArticleDOI
TL;DR: The tight regulation of the PBAD promoter is exploited to study the phenotypes of null mutations of essential genes and the use of pBAD vectors as an expression system is explored.
Abstract: We have constructed a series of plasmid vectors (pBAD vectors) containing the PBAD promoter of the araBAD (arabinose) operon and the gene encoding the positive and negative regulator of this promoter, araC. Using the phoA gene and phoA fusions to monitor expression in these vectors, we show that the ratio of induction/repression can be 1,200-fold, compared with 50-fold for PTAC-based vectors. phoA expression can be modulated over a wide range of inducer (arabinose) concentrations and reduced to extremely low levels by the presence of glucose, which represses expression. Also, the kinetics of induction and repression are very rapid and significantly affected by the ara allele in the host strain. Thus, the use of this system which can be efficiently and rapidly turned on and off allows the study of important aspects of bacterial physiology in a very simple manner and without changes of temperature. We have exploited the tight regulation of the PBAD promoter to study the phenotypes of null mutations of essential genes and explored the use of pBAD vectors as an expression system.

4,997 citations

Journal ArticleDOI
TL;DR: The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1, and three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.
Abstract: Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive. The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein "DsRed" by directed evolution first to increase the speed of maturation, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.

4,607 citations