scispace - formally typeset
Search or ask a question
Author

M.J. Fernández-Merino

Bio: M.J. Fernández-Merino is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Graphene & Graphite oxide. The author has an hindex of 10, co-authored 11 publications receiving 1931 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the deoxygenation efficiency of graphene oxide suspensions by different reductants (sodium borohydride, pyrogallol, and vitamin C, in addition to hydrazine), as well as by heating the suspensions under alkaline conditions, was compared.
Abstract: The preparation of solution-processable graphene from graphite oxide typically involves a hydrazine reduction step, but the use of such a reagent in the large-scale implementation of this approach is not desirable due to its high toxicity. Here, we compare the deoxygenation efficiency of graphene oxide suspensions by different reductants (sodium borohydride, pyrogallol, and vitamin C, in addition to hydrazine), as well as by heating the suspensions under alkaline conditions. In almost all cases, the degree of reduction attainable and the subsequent restoration of relevant properties (e.g., electrical conductivity) lag significantly behind those achieved with hydrazine. Only vitamin C is found to yield highly reduced suspensions in a way comparable to those provided by hydrazine. Stable suspensions of vitamin C-reduced graphene oxide can be prepared not only in water but also in common organic solvents, such as N,N-dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP). These results open the perspective ...

1,269 citations

Journal ArticleDOI
01 Apr 2011-Carbon
TL;DR: In this article, the preparation of aqueous graphene dispersions by exfoliation of pristine graphite in the presence of a wide range of surfactants was reported, and the potential utility of such highly concentrated dispersions toward the low-cost, large-scale manipulation and processing of graphene was demonstrated by processing them into electrically conductive, free-standing paper-like films.

408 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight different environmentally friendly methods for the production of graphene from graphite oxide have emerged, which are based on solvothermal and electrochemical processes, as well as on the use of green reductants.
Abstract: Graphene has attracted a great deal of scientific interest in latter years owing to its unique properties, with many prospective applications being actively investigated at present. However, the actual implementation of graphene in technological uses will depend critically on the development of appropriate methodologies for its mass production. In this regard, one of the most promising approaches is based on the exfoliation and reduction of graphite oxide. Graphenes derived from graphite oxide can be prepared at low cost and high throughput, can be further processed in a number of solvents, and are chemically versatile, among other attractive features. In an environment-conscious world, the availability of green approaches toward graphene production would also constitute an added advantage. During the last year, different environmentally friendly methods for the production of graphene from graphite oxide have emerged, which we highlight here. These are based on solvothermal and electrochemical processes, as well as on the use of green reductants. Several open questions and possible future directions for this research topic are also discussed.

177 citations

Journal ArticleDOI
01 Aug 2012-Carbon
TL;DR: In this article, financial support from the Spanish MICINN (projects MAT2008-05700, MAT2010-15273 and MAT2011-26399) is gratefully acknowledged.

93 citations

Journal ArticleDOI
TL;DR: In this article, the structure and chemistry of exfoliated graphite oxide (graphene oxide) samples reduced to different degrees using atomic force and scanning tunneling microscopy (AFM/STM) as well as X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD), respectively.

74 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2012-Carbon
TL;DR: In this paper, the state-of-the-art status of the reduction of GO on both techniques and mechanisms is reviewed, where the reduction process can partially restore the structure and properties of graphene.

4,187 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...

1,823 citations

Journal ArticleDOI
TL;DR: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes, and graphene analogues.
Abstract: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π–π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graph...

1,799 citations