scispace - formally typeset
Search or ask a question
Author

M. J. Reed

Bio: M. J. Reed is an academic researcher from North Carolina State University. The author has contributed to research in topics: Ferromagnetism & Magnetic semiconductor. The author has an hindex of 10, co-authored 19 publications receiving 1256 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Curie temperature of Mn-doped GaN films has been obtained by varying the growth and annealing conditions of the GaN and they have been shown to have ferromagnetic behavior with hysteresis curves showing a coercivity of 100−500 Oe.
Abstract: Dilute magnetic semiconductor GaN with a Curie temperature above room temperature has been achieved by manganese doping. By varying the growth and annealing conditions of Mn-doped GaN we have identified Curie temperatures in the range of 228–370 K. These Mn-doped GaN films have ferromagnetic behavior with hysteresis curves showing a coercivity of 100–500 Oe. Structure characterization by x-ray diffraction and transmission electron microscopy indicated that the ferromagnetic properties are not a result of secondary magnetic phases.

635 citations

Journal ArticleDOI
TL;DR: In this paper, the critical layer thickness was identified as the thickness where a transition occurs from the strained to unstrained condition, which is accompanied by the appearance of deep level emission and a drop in band edge photoluminescence intensity.
Abstract: We present an approach to determine the critical layer thickness in the InxGa1−xN/GaN heterostructure based on the observed change in the photoluminescence emission as the InxGa1−xN film thickness increases. From the photoluminescence data, we identify the critical layer thickness as the thickness where a transition occurs from the strained to unstrained condition, which is accompanied by the appearance of deep level emission and a drop in band edge photoluminescence intensity. The optical data that indicate the onset of critical layer thickness, was also confirmed by the changes in InxGa1−xN surface morphology with thickness, and is consistent with x-ray diffraction measurements.

137 citations

Journal ArticleDOI
TL;DR: In this article, band gap measurements have been carried out in strained and relaxed InxGa1−xN epilayers with x < 0.25 and the dependence of the band gap shift, ΔEg, on strain is presented.
Abstract: Band gap measurements have been carried out in strained and relaxed InxGa1−xN epilayers with x<0.25. Values of x were determined from x-ray diffraction of relaxed films. The lowest energy absorption threshold, measured by transmittance, was found to occur at the same energy as the peak of the photoluminescence spectrum. Bowing parameters for both strained and relaxed films were determined to be 3.42 and 4.11 eV, respectively. The dependence of the band gap shift, ΔEg, on strain is presented.

97 citations

Journal ArticleDOI
TL;DR: A new dilute magnetic semiconductor (Ga,Mn)N grown by metal organic chemical vapor deposition (MOCVD) is reported in this paper, where the direction of the easy axis and the Curie temperature varies with the growth conditions, the latter ranging from 38°C to 75°C Secondary ion mass spectroscopy (SIMS) confirms diffusion of Mn into the GaN to a depth of 380 A

80 citations

Journal ArticleDOI
TL;DR: In this article, the critical layer thickness of GaN/InxGa1−xN/GaN double heterostructures in the composition range 0
Abstract: We report on the critical layer thickness of GaN/InxGa1−xN/GaN double heterostructures in the composition range 0

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a transparent ZnO-based thin-film transistors (TFTs) for select-transistors in each pixel of an active-matrix liquid-crystal display.
Abstract: Highly transparent ZnO-based thin-film transistors (TFTs) are fabricated with optical transmission (including substrate) of ∼75% in the visible portion of the electromagnetic spectrum. Current–voltage measurements indicate n-channel, enhancement-mode TFT operation with excellent drain current saturation and a drain current on-to-off ratio of ∼107. Threshold voltages and channel mobilities of devices fabricated to date range from ∼10 to 20 V and ∼0.3 to 2.5 cm2/V s, respectively. Exposure to ambient light has little to no observable effect on the drain current. In contrast, exposure to intense ultraviolet radiation results in persistent photoconductivity, associated with the creation of electron-hole pairs by ultraviolet photons with energies greater than the ZnO band gap. Light sensitivity is reduced by decreasing the ZnO channel layer thickness. One attractive application for transparent TFTs involves their use as select-transistors in each pixel of an active-matrix liquid-crystal display.

1,415 citations

Journal ArticleDOI
TL;DR: In this article, the current status of the field of (III,Mn)V diluted magnetic semiconductors is reviewed, focusing on the first two, more mature research directions: the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, and the development of spintronic devices with new functionalities.
Abstract: The body of research on (III,Mn)V diluted magnetic semiconductors initiated during the 1990's has concentrated on three major fronts: i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, ii) the materials science of growth and defects and iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and post-growth treatment techniques have played a central role in the field, often pushing the limits of dilute Mn moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. In the review we focus on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magneto-transport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. The conclusions we arrive at are based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment.

1,032 citations