scispace - formally typeset
Search or ask a question
Author

M. J. Reid

Bio: M. J. Reid is an academic researcher from Max Planck Society. The author has contributed to research in topics: Maser & Megamaser. The author has an hindex of 22, co-authored 49 publications receiving 3132 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the VLBA and the Japanese VERA project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way.
Abstract: We are using the VLBA and the Japanese VERA project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus spiral arm has a pitch angle of 16 +/- 3 degrees, which favors four rather than two spiral arms for the Galaxy. Combining positions, distances, proper motions, and radial velocities yields complete 3-dimensional kinematic information. We find that star forming regions on average are orbiting the Galaxy ~15 km/s slower than expected for circular orbits. By fitting the measurements to a model of the Galaxy, we estimate the distance to the Galactic center R_o = 8.4 +/- 0.6 kpc and a circular rotation speed Theta_o = 254 +/- 16 km/s. The ratio Theta_o/R_o can be determined to higher accuracy than either parameter individually, and we find it to be 30.3 +/- 0.9 km/s/kpc, in good agreement with the angular rotation rate determined from the proper motion of Sgr A*. The data favor a rotation curve for the Galaxy that is nearly flat or slightly rising with Galactocentric distance. Kinematic distances are generally too large, sometimes by factors greater than two; they can be brought into better agreement with the trigonometric parallaxes by increasing Theta_o/R_o from the IAU recommended value of 25.9 km/s/kpc to a value near 30 km/s/kpc. We offer a "revised" prescription for calculating kinematic distances and their uncertainties, as well as a new approach for defining Galactic coordinates. Finally, our estimates of Theta_o and To/R_o, when coupled with direct estimates of R_o, provide evidence that the rotation curve of the Milky Way is similar to that of the Andromeda galaxy, suggesting that the dark matter halos of these two dominant Local Group galaxy are comparably massive.

1,055 citations

Journal ArticleDOI
TL;DR: In this article, the adaptive optics assisted, integral field spectrograph SINFONI was used to detect early and late type stars in the central parsec of the galaxy.
Abstract: We present new observations of the nuclear star cluster in the central parsec of the Galaxy with the adaptive optics assisted, integral field spectrograph SINFONI on the ESO/VLT. Our work allows the spectroscopic detection of early and late type stars to m_K >= 16, more than 2 magnitudes deeper than our previous data sets. Our observations result in a total sample of 177 bona fide early-type stars. We find that most of these Wolf Rayet (WR), O- and B- stars reside in two strongly warped disks between 0.8" and 12" from SgrA*, as well as a central compact concentration (the S-star cluster) centered on SgrA*. The later type B stars (m_K>15) in the radial interval between 0.8" and 12" seem to be in a more isotropic distribution outside the disks. The observed dearth of late type stars in the central few arcseconds is puzzling, even when allowing for stellar collisions. The stellar mass function of the disk stars is extremely top heavy with a best fit power law of dN/dm ~ m^(-0.45+/-0.3). Since at least the WR/O-stars were formed in situ in a single star formation event ~6 Myrs ago, this mass function probably reflects the initial mass function (IMF). The mass functions of the S-stars inside 0.8" and of the early-type stars at distances beyond 12" are compatible with a standard Salpeter/Kroupa IMF (best fit power law of dN/dm ~ m^(-2.15+/-0.3)).

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report trigonometric parallaxes for the sources NGC 7538 and Cep A, corresponding to distances of 2.65 ± 0.12/-0.11 kpc and 0.70 −0.04/- 0.04 kpc, respectively.
Abstract: We report trigonometric parallaxes for the sources NGC 7538 and Cep A, corresponding to distances of 2.65 [+0.12/-0.11] kpc and 0.70 [+0.04/-0.04] kpc, respectively. The distance to NGC 7538 is considerably smaller than its kinematic distance and places it in the Perseus spiral arm. The distance to Cep A is also smaller than its kinematic distance and places it in the Local arm or spur. Combining the distance and proper motions with observed radial velocities gives the location and full space motion of the star forming regions. We find significant deviations from circular Galactic orbits for these sources: both sources show large peculiar motions (> 10 km/s) counter to Galactic rotation and NGC 7538 has a comparable peculiar motion toward the Galactic center.

207 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a VLBI map of the water masers toward UGC 3789, a galaxy well into the Hubble Flow, and revealed masers in a nearly edge-on disk in Keplerian rotation about a 10^7 Msun supermassive black hole.
Abstract: The Megamaser Cosmology Project (MCP) seeks to measure the Hubble Constant (Ho) in order to improve the extragalactic distance scale and constrain the nature of dark energy. We are searching for sources of water maser emission from AGN with sub-pc accretion disks, as in NGC 4258, and following up these discoveries with Very Long Baseline Interferometric (VLBI) imaging and spectral monitoring. Here we present a VLBI map of the water masers toward UGC 3789, a galaxy well into the Hubble Flow. We have observed masers moving at rotational speeds up to 800 km/s at radii as small as 0.08 pc. Our map reveals masers in a nearly edge-on disk in Keplerian rotation about a 10^7 Msun supermassive black hole. When combined with centripetal accelerations, obtained by observing spectral drifts of maser features (to be presented in Paper II), the UGC 3789 masers may provide an accurate determination of Ho, independent of luminosities and metallicity and extinction corrections.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract: We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

6,201 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%.
Abstract: We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19, these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s(−)(1) Mpc(−)(1), respectively. Our best estimate of H (0) = 73.24 ± 1.74 km s(−)(1) Mpc(−)(1) combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s(−)(1) Mpc(−)(1) predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s(−)(1) Mpc(−)(1) based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H (0) at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN (eff) ≈ 0.4–1. We anticipate further significant improvements in H (0) from upcoming parallax measurements of long-period MW Cepheids.

2,228 citations

Journal ArticleDOI
TL;DR: In this article, the stellar kinematics of the solar neighbourhood in terms of the velocity υ� of the Sun with respect to the local standard of rest were examined. But the results were not robust to the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties.
Abstract: We re-examine the stellar kinematics of the solar neighbourhood in terms of the velocity υ� of the Sun with respect to the local standard of rest. We show that the classical determination of its component Vin the direction of Galactic rotation via Str¨ omberg's relation is undermined by the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties. Comparing the local stellar kinematics to a chemodynamical model which accounts for these effects, we obtain (U, V, W)� = (11.1 +0.69 −0.75 , 12.24 +0.47 −0.47 ,7 .25 +0.37 −0.36 )k m s −1 , with additional systematic uncertainties ∼(1, 2, 0.5) km s −1 . In particular, Vis 7 km s −1 larger than previously estimated. The new values of (U, V, W)� are extremely insensitive to the metallicity gradient within the disc.

1,704 citations