scispace - formally typeset
Search or ask a question
Author

M. Jablonski

Bio: M. Jablonski is an academic researcher from University of Tokyo. The author has contributed to research in topics: Saturable absorption & Optical communication. The author has an hindex of 13, co-authored 35 publications receiving 1692 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 2004
TL;DR: In this article, the authors describe a new class of saturable absorber device based on single-wall carbon nanotube (SWNT)-the saturable absorbing nano tube (SAINT), which possesses ultrafast optical properties comparable to that of the industrial standard semiconductor SESAM.
Abstract: This paper describes a new class of saturable absorber device based on single-wall carbon nanotube (SWNT)-the saturable absorber incorporating nano tube (SAINT). The device possesses ultrafast optical properties comparable to that of the industrial standard semiconductor saturable absorber mirror (SESAM). Passively mode-locked picosecond fiber lasers in different configurations are demonstrated using SAINTs as mode lockers. This is the first demonstration of optical pulsed lasers based on the carbon nanotube technology, and the first practical application of carbon nanotubes in the field of applied optics.

552 citations

Journal ArticleDOI
TL;DR: High-quality single-walled carbon nanotubes were directly synthesized on quartz substrates and fiber ends and successfully applied the SWNTs to mode lock a fiber laser producing subpicosecond pulses at a 50-MHz repetition rate.
Abstract: We present novel carbon-nanotube-based saturable absorbers. Using the low-temperature alcohol catalytic chemical-vapor deposition method, high-quality single-walled carbon nanotubes (SWNTs) were directly synthesized on quartz substrates and fiber ends. We successfully applied the SWNTs to mode lock a fiber laser producing subpicosecond pulses at a 50-MHz repetition rate.

419 citations

Journal ArticleDOI
TL;DR: In this paper, the first passively mode-locked fiber laser based on carbon nanotubes (SAINT) is presented, which offers several key advantages such as: ultrafast recovery time (<1 ps), high-optical damage threshold, mechanical and environmental robustness, chemical stability, and the ability to operate in transmission, reflection, and bidirectional modes.
Abstract: We present the first passively mode-locked fiber lasers based on a novel saturable absorber incorporating carbon nanotubes (SAINT). This device offers several key advantages such as: ultrafast recovery time (<1 ps), high-optical damage threshold, mechanical and environmental robustness, chemical stability, and the ability to operate in transmission, reflection, and bidirectional modes. Moreover, the fabrication cost and complexity of SAINT devices are potentially lower than that of conventional semiconductor saturable absorber mirror devices. Therefore, it is expected that SAINT will greatly impact future pulsed laser design and development.

372 citations

Proceedings ArticleDOI
23 Mar 2003
TL;DR: In this article, a novel passively mode-locked fiber laser is demonstrated using saturable absorber based on single-walled carbon nanotubes, which is the first demonstration of an optical pulsed laser based on carbon nanotide technology.
Abstract: A novel passively mode-locked fiber laser is demonstrated using saturable absorber based on single-walled carbon nanotubes. This is the first demonstration of an optical pulsed laser based on carbon nanotube technology.

96 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate passive mode-locking of a short-cavity fiber Fabry-Pe/spl acute/rot laser by incorporating a carbon-nanotube-based saturable absorber.
Abstract: We demonstrate passive mode-locking of a short-cavity (/spl sim/2 cm) fiber Fabry-Pe/spl acute/rot laser by incorporating a carbon-nanotube-based saturable absorber. Stable pulses are generated with a pulsewidth as short as 0.68 ps at a repetition rate as high as 5.18 GHz. This is the smallest femtosecond fiber pulsed laser ever demonstrated to date.

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of atomic layer graphene as saturable absorber in a mode-locked fiber laser for the generation of ultrashort soliton pulses (756 fs) at the telecommunication band is demonstrated.
Abstract: The optical conductance of monolayer graphene is defined solely by the fine structure constant, α = (where e is the electron charge, is Dirac's constant and c is the speed of light). The absorbance has been predicted to be independent of frequency. In principle, the interband optical absorption in zero-gap graphene could be saturated readily under strong excitation due to Pauli blocking. Here, use of atomic layer graphene as saturable absorber in a mode-locked fiber laser for the generation of ultrashort soliton pulses (756 fs) at the telecommunication band is demonstrated. The modulation depth can be tuned in a wide range from 66.5% to 6.2% by varying the graphene thickness. These results suggest that ultrathin graphene films are potentially useful as optical elements in fiber lasers. Graphene as a laser mode locker can have many merits such as lower saturation intensity, ultrafast recovery time, tunable modulation depth, and wideband tunability.

2,217 citations

Posted Content
TL;DR: In this paper, the authors demonstrate the use of atomic layer graphene as saturable absorber in a mode-locked fiber laser for the generation of ultrashort soliton pulses (756 fs) at the telecommunication band.
Abstract: The optical conductance of monolayer graphene is defined solely by the fine structure constant. The absorbance has been predicted to be independent of frequency. In principle, the interband optical absorption in zero-gap graphene could be saturated readily under strong excitation due to Pauli blocking. Here, we demonstrate the use of atomic layer graphene as saturable absorber in a mode-locked fiber laser for the generation of ultrashort soliton pulses (756 fs) at the telecommunication band. The modulation depth can be tuned in a wide range from 66.5% to 6.2% by varying the thickness of graphene. Our results suggest that ultrathin graphene films are potentially useful as optical elements in fiber lasers. Graphene as a laser mode locker can have many merits such as lower saturation intensity, ultrafast recovery time, tunable modulation depth and wideband tuneability.

2,039 citations

Journal ArticleDOI
TL;DR: A review on the latest developments on graphene, written from the perspective of a chemist, is presented in this article, where the role of chemistry in bringing graphene research to the next level is discussed.
Abstract: A review on the latest developments on graphene, written from the perspective of a chemist, is presented. The role of chemistry in bringing graphene research to the next level is discussed.

1,333 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review various aspects of fabrication, characterization, device implementation and operation of carbon nanotube-polymer composites to be used in photonic applications.
Abstract: Polymer composites are one of the most attractive near-term means to exploit the unique properties of carbon nanotubes and graphene. This is particularly true for composites aimed at electronics and photonics, where a number of promising applications have already been demonstrated. One such example is nanotube-based saturable absorbers. These can be used as all-optical switches, optical amplifier noise suppressors, or mode-lockers to generate ultrashort laser pulses. Here, we review various aspects of fabrication, characterization, device implementation and operation of nanotube-polymer composites to be used in photonic applications. We also summarize recent results on graphene-based saturable absorbers for ultrafast lasers.

959 citations

Journal ArticleDOI
07 Oct 2013-ACS Nano
TL;DR: Employing high-yield production of layered materials by liquid-phase exfoliation, molybdenum disulfide (MoS2) dispersions with large populations of single and few layers were prepared and exhibited significant saturable absorption (SA) for the femtosecond pulses.
Abstract: Employing high-yield production of layered materials by liquid-phase exfoliation, molybdenum disulfide (MoS2) dispersions with large populations of single and few layers were prepared. Electron microscopy verified the high quality of the two-dimensional MoS2 nanostructures. Atomic force microscopy analysis revealed that ∼39% of the MoS2 flakes had thicknesses of less than 5 nm. Linewidth and frequency difference of the E12g and A1g Raman modes confirmed the effective reduction of flake thicknesses from the bulk MoS2 to the dispersions. Ultrafast nonlinear optical (NLO) properties were investigated using an open-aperture Z-scan technique. All experiments were performed using 100 fs pulses at 800 nm from a mode-locked Ti:sapphire laser. The MoS2 nanosheets exhibited significant saturable absorption (SA) for the femtosecond pulses, resulting in the third-order NLO susceptibility Imχ(3) ∼ 10–15 esu, figure of merit ∼10–15 esu cm, and free-carrier absorption cross section ∼10–17 cm2. Induced free carrier densi...

883 citations