scispace - formally typeset
Search or ask a question
Author

M.K. Ibragimova

Bio: M.K. Ibragimova is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Breast cancer & Medicine. The author has an hindex of 8, co-authored 33 publications receiving 174 citations. Previous affiliations of M.K. Ibragimova include Tomsk State University & Research Medical Center.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This study for the first time demonstrates that deletion MDR gene loci can be used as predictive marker for tumor response to NAC.
Abstract: Neoadjuvant chemotherapy (NAC) is intensively used for the treatment of primary breast cancer. In our previous studies, we reported that clinical tumor response to NAC is associated with the change of multidrug resistance (MDR) gene expression in tumors after chemotherapy. In this study we performed a combined analysis of MDR gene locus deletions in tumor DNA, MDR gene expression and clinical response to NAC in 73 BC patients. Copy number variations (CNVs) in biopsy specimens were tested using high-density microarray platform CytoScanTM HD Array (Affymetrix, USA). 75%-100% persons having deletions of MDR gene loci demonstrated the down-regulation of MDR gene expression. Expression of MDR genes was 2-8 times lower in patients with deletion than in patients having no deletion only in post-NAC tumors samples but not in tumor tissue before chemotherapy. All patients with deletions of ABCB1 ABCB 3 ABCC5 gene loci--7q21.1, 6p21.32, 3q27 correspondingly, and most patients having deletions in ABCC1 (16p13.1), ABCC2 (10q24), ABCG1 (21q22.3), ABCG2 (4q22.1), responded favorably to NAC. The analysis of all CNVs, including both amplification and deletion showed that the frequency of 13q14.2 deletion was 85% among patients bearing tumor with the deletion at least in one MDR gene locus versus 9% in patients with no deletions. Differences in the frequency of 13q14.2 deletions between the two groups were statistically significant (p = 2.03 × 10(-11), Fisher test, Bonferroni-adjusted p = 1.73 × 10(-8)). In conclusion, our study for the first time demonstrates that deletion MDR gene loci can be used as predictive marker for tumor response to NAC.

37 citations

Journal ArticleDOI
TL;DR: Approaches to tumor treatment based on clonal evolution are formulates, in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating theClonal evolution of tumors are presented.
Abstract: Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.

35 citations

Journal ArticleDOI
TL;DR: In patients with breast cancer who received anthracycline-containing NAC the absence of clinical response is associated with the presence of M2+ macrophage phenotype, which is indicative for clinical and pathological chemotherapy efficacy in breast cancer patients.
Abstract: High activity of enzyme TOP2a in tumor cells is known to be associated with sensitivity to anthracycline chemotherapy, but 20% of such patients do not show clinical response. Tumor microenvironment, including tumor-associated macrophages (TAM), is an essential factor defining the efficiency of chemotherapy. In the present study, we analyzed the expression of M2 macrophage markers, YKL-39 and CCL18, in tumors of breast cancer patients received anthracycline-based NAC. Patients were divided into two groups according to the level of doxorubicin sensitivity marker TOP2a: DOX-Sense and DOX-Res groups. Expression levels of TOR2a, CD68, YKL-39 and CCL18 genes were analyzed by qPCR, the amplification of TOR2a gene locus was assessed by the microarray assay. Clinical and pathological responses to neoadjuvant chemotherapy were assessed. We found that the average level of TOP2a expression in patients of DOX-Sense group was almost 10 times higher than in patients of DOX-Res group, and the expression of CD68 was 3 times higher in the DOX-Sense group compared to DOX-Res group. We demonstrated that expression levels of M2-derived cytokines but not the amount of TAM is indicative for clinical and pathological chemotherapy efficacy in breast cancer patients. Out of 8 patients from DOX-Sense group who did not respond to neoadjuvant chemotherapy (NAC), 7 patients had M2+ macrophage phenotype (YKL-39+CCL18− or YKL-39−CCL18+) and only one patient had M2− macrophage phenotype (YKL-39−CCL18−). In DOX-Res group, out of 14 patients who clinically responded to NAC 9 patients had M2− phenotype and only 5 patients had M2+ macrophage phenotype. Among pathological non-responders in DOX-Sense group, 19 (82%) patients had M2+ tumor phenotype and only 4 (18%) patients had M2− phenotype. In DOX-Res group, all 5 patients who pathologically responded to NAC had M2 phenotype (YKL-39−CCL18−). Unlike the clinical response to NAC, the differences in the frequency of M2+ and M2− phenotypes between pathologically responding and non-responding patients within DOX-Sense and DOX-Res groups were statistically significant. Thus, we showed that in patients with breast cancer who received anthracycline-containing NAC the absence of clinical response is associated with the presence of M2+ macrophage phenotype (YKL-39-CCL18 + or YKL-39 + CCL18-) based on TOP2a overexpression data.

31 citations

Journal ArticleDOI
TL;DR: This work has developed multiplex methylation sensitive restriction enzyme PCR (MSRE-PCR) protocol for determining the methylation status of 10 genes that distinguish BC samples with different NACT response.
Abstract: Despite the advantages of neoadjuvant chemotherapy (NACT), associated toxicity is a serious complication that renders monitoring of the patients' response to NACT highly important. Thus, prediction of tumor response to treatment is imperative to avoid exposure of potential non-responders to deleterious complications. We have performed genome-wide analysis of DNA methylation by XmaI-RRBS and selected CpG dinucleotides differential methylation of which discriminates luminal B breast cancer samples with different sensitivity to NACT. With this data, we have developed multiplex methylation sensitive restriction enzyme PCR (MSRE-PCR) protocol for determining the methylation status of 10 genes (SLC9A3, C1QL2, DPYS, IRF4, ADCY8, KCNQ2, TERT, SYNDIG1, SKOR2 and GRIK1) that distinguish BC samples with different NACT response. Analysis of these 10 markers by MSRE-PCR in biopsy samples allowed us to reveal three top informative combinations of markers, (1) IRF4 and C1QL2; (2) IRF4, C1QL2, and ADCY8; (3) IRF4, C1QL2, and DPYS, with the areas under ROC curves (AUCs) of 0.75, 0.78 and 0.74, respectively. A classifier based on IRF4 and C1QL2 better meets the diagnostic panel simplicity requirements, as it consists of only two markers. Diagnostic accuracy of the panel of these two markers is 0.75, with the sensitivity of 75% and specificity of 75%.

23 citations

Journal ArticleDOI
TL;DR: Highly and moderately methylated BC superclusters, each incorporate three distinct epigenomic BC clusters with specific features, suggesting novel perspectives for personalized therapy.
Abstract: Aim: To provide a breast cancer (BC) methylotype classification by genome-wide CpG islands bisulfite DNA sequencing. Materials & methods: XmaI-reduced representation bisulfite sequencing DNA methylation sequencing method was used to profile DNA methylation of 110 BC samples and 6 normal breast samples. Intrinsic DNA methylation BC subtypes were elicited by unsupervised hierarchical cluster analysis, and cluster-specific differentially methylated genes were identified. Results & conclusion: Overall, six distinct BC methylotypes were identified. BC cell lines constitute a separate group extremely highly methylated at the CpG islands. In turn, primary BC samples segregate into two major subtypes, highly and moderately methylated. Highly and moderately methylated superclusters, each incorporate three distinct epigenomic BC clusters with specific features, suggesting novel perspectives for personalized therapy.

23 citations


Cited by
More filters
01 Apr 2014
TL;DR: This study identifies a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation and reconstructs a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs.
Abstract: Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements and are sufficient to fully reprogram differentiated GBM cells to "induced" TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PAPERCLIP:

614 citations

Journal ArticleDOI
TL;DR: The complex role of TAMs in the progression of different types of solid tumors is elucidated, the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages is summarized, and the mechanisms of chemotherapy resistance mediated by TAMs are described.
Abstract: It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.

178 citations

Journal ArticleDOI
TL;DR: TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes as mentioned in this paper, which constitute up to 50% of the cell mass of human tumors.
Abstract: Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.

156 citations

Journal ArticleDOI
TL;DR: The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies to reverse drug resistance in heterogeneous cancer.
Abstract: Phenotypic and functional heterogeneity is one of the hallmarks of human cancers. Tumor genotype variations among tumors within different patients are known as interpatient heterogeneity, and variability among multiple tumors of the same type arising in the same patient is referred to as intra-patient heterogeneity. Subpopulations of cancer cells with distinct phenotypic and molecular features within a tumor are called intratumor heterogeneity (ITH). Since Nowell proposed the clonal evolution of tumor cell populations in 1976, tumor heterogeneity, especially ITH, was actively studied. Research has focused on the genetic basis of cancer, particularly mutational activation of oncogenes or inactivation of tumor-suppressor genes (TSGs). The phenomenon of ITH is commonly explained by Darwinian-like clonal evolution of a single tumor. Despite the monoclonal origin of most cancers, new clones arise during tumor progression due to the continuous acquisition of mutations. It is clear that disruption of the "epigenetic machinery" plays an important role in cancer development. Aberrant epigenetic changes occur more frequently than gene mutations in human cancers. The epigenome is at the intersection of the environment and genome. Epigenetic dysregulation occurs in the earliest stage of cancer. The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies. A majority of cancer therapies fail to achieve durable responses, which is often attributed to ITH. Epigenetic therapy may reverse drug resistance in heterogeneous cancer. Complete understanding of genetic and epigenetic heterogeneity may assist in designing combinations of targeted therapies based on molecular information extracted from individual tumors.

128 citations

Journal ArticleDOI
23 Apr 2020-Cancers
TL;DR: The relationship between DNA damage/repair mechanisms and cancer, and how the authors can target these pathways are discussed.
Abstract: DNA damage is well recognized as a critical factor in cancer development and progression. DNA lesions create an abnormal nucleotide or nucleotide fragment, causing a break in one or both chains of the DNA strand. When DNA damage occurs, the possibility of generated mutations increases. Genomic instability is one of the most important factors that lead to cancer development. DNA repair pathways perform the essential role of correcting the DNA lesions that occur from DNA damaging agents or carcinogens, thus maintaining genomic stability. Inefficient DNA repair is a critical driving force behind cancer establishment, progression and evolution. A thorough understanding of DNA repair mechanisms in cancer will allow for better therapeutic intervention. In this review we will discuss the relationship between DNA damage/repair mechanisms and cancer, and how we can target these pathways.

123 citations