scispace - formally typeset
Search or ask a question
Author

M. K. Mandal

Bio: M. K. Mandal is an academic researcher from University of Padua. The author has contributed to research in topics: Physics & Quantum chromodynamics. The author has an hindex of 15, co-authored 22 publications receiving 761 citations. Previous affiliations of M. K. Mandal include Istituto Nazionale di Fisica Nucleare & Harish-Chandra Research Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a framework based on an effective field theory approach is introduced to perform characterisation studies of the boson recently discovered at the LHC, for all the relevant channels and in a consistent, systematic and accurate way.
Abstract: We introduce a framework, based on an effective field theory approach, that allows one to perform characterisation studies of the boson recently discovered at the LHC, for all the relevant channels and in a consistent, systematic and accurate way. The production and decay of such a boson with various spin and parity assignments can be simulated by means of multi-parton, tree-level matrix elements and of next-to-leading order QCD calculations, both matched with parton showers. Several sample applications are presented which show, in particular, that beyond-leading-order effects in QCD have nontrivial phenomenological implications.

271 citations

Journal ArticleDOI
TL;DR: In this paper, a direct decomposition of Feynman integrals onto a basis of master integrals on maximal cuts using intersection numbers is presented, where the decomposition formulae computed through the use of intersection numbers are directly verified to agree with the ones obtained using integration-by-parts identities.
Abstract: We elaborate on the recent idea of a direct decomposition of Feynman integrals onto a basis of master integrals on maximal cuts using intersection numbers. We begin by showing an application of the method to the derivation of contiguity relations for special functions, such as the Euler beta function, the Gauss 2F1 hypergeometric function, and the Appell F1 function. Then, we apply the new method to decompose Feynman integrals whose maximal cuts admit 1-form integral representations, including examples that have from two to an arbitrary number of loops, and/or from zero to an arbitrary number of legs. Direct constructions of differential equations and dimensional recurrence relations for Feynman integrals are also discussed. We present two novel approaches to decomposition-by-intersections in cases where the maximal cuts admit a 2-form integral representation, with a view towards the extension of the formalism to n-form representations. The decomposition formulae computed through the use of intersection numbers are directly verified to agree with the ones obtained using integration-by-parts identities.

113 citations

Journal ArticleDOI
TL;DR: In this article, a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals is presented, which can be used to solve the problem of integral reduction to a basis of master integrals by projections, and directly derive functional equations fulfilled by the latter.
Abstract: Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can be more generally employed for the derivation of contiguity relations for special functions admitting multifold integral representations.

100 citations

Proceedings ArticleDOI
31 Jan 2019
TL;DR: In this article, the authors connect the direct decomposition of Feynman integrals with the intersection theory, and consider few maximally cut integrals and show their decomposition to the Master Integrals.
Abstract: The reduction of a large number of scalar multi-loop integrals to the smaller set of Master Integrals is an integral part of the computation of any multi-loop amplitudes. The reduction is usually achieved by employing the traditional Integral-By-Parts (IBP) relations. However, in case of integrals with large number of scales, this quickly becomes a bottleneck. In this talk, I will show the application of the recent idea, connecting the direct decomposition of Feynman integrals with the Intersection theory. Specifically, we will consider few maximally cut Feynman integrals and show their direct decomposition to the Master Integrals.

62 citations

Journal ArticleDOI
TL;DR: The threshold N(3)LO perturbative QCD corrections to the rapidity distributions of dileptons in the Drell-Yan process and Higgs boson in gluon fusion are presented and the importance of these corrections at the LHC is demonstrated.
Abstract: We present the threshold ${\mathrm{N}}^{3}\mathrm{LO}$ perturbative QCD corrections to the rapidity distributions of dileptons in the Drell-Yan process and Higgs boson in gluon fusion. Sudakov resummation of QCD amplitudes, renormalization group invariance, and the mass factorization theorem provide useful guidelines to obtain them in an elegant manner. We use various state of the art three loop results that have been recently available to obtain these distributions. For the Higgs boson, we demonstrate numerically the importance of these corrections at the LHC.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: MadGraph5 aMC@NLO as discussed by the authors is a computer program capable of handling all these computations, including parton-level fixed order, shower-matched, merged, in a unified framework whose defining features are flexibility, high level of parallelisation and human intervention limited to input physics quantities.
Abstract: We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5 aMC@NLO, capable of handling all these computations — parton-level fixed order, shower-matched, merged — in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e + e − collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

6,509 citations

Journal ArticleDOI
TL;DR: In this article, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test is presented, which is based on LO, NLO and NNLO QCD theory and also includes electroweak corrections.
Abstract: We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

2,028 citations

Proceedings ArticleDOI
01 Jan 2007
TL;DR: In this paper, a preliminary set of updated NLO parton distributions and their uncertainties determined from CCFR and NuTeV dimuon cross sections are presented, along with additional jet data from HERA and the Tevatron.
Abstract: We present a preliminary set of updated NLO parton distributions. For the first time we have a quantitative extraction of the strange quark and antiquark distributions and their uncertainties determined from CCFR and NuTeV dimuon cross sections. Additional jet data from HERA and the Tevatron improve our gluon extraction. Lepton asymmetry data and neutrino structure functions improve the flavour separation, particularly constraining the down quark valence distribution.

1,288 citations

Journal ArticleDOI
TL;DR: MadGraph5_aMC@NLO as discussed by the authors is a computer program capable of handling parton-level fixed order, shower-matched, merged computations in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities.
Abstract: We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level fixed order, shower-matched, merged -- in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV $e^+e^-$ collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

852 citations

BookDOI
04 Jul 2013
TL;DR: In 2012 and the first half of 2013, the LHC Higgs Cross Section Working Group as mentioned in this paper presented the state of the art of Higgs physics at the Large Hadron Collider (LHC), integrating all new results that have appeared in the last few years.
Abstract: This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.

778 citations