scispace - formally typeset
Search or ask a question
Author

M. Kawakami

Bio: M. Kawakami is an academic researcher. The author has contributed to research in topics: Ultrapure water & Silicon oxide. The author has an hindex of 1, co-authored 1 publications receiving 732 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the control factors controlling the growth of native silicon oxide on silicon (Si) surfaces have been identified, and the chemical bond structures for native oxide films grown in air and in ultrapure water are also discussed.
Abstract: The control factors controlling the growth of native silicon oxide on silicon (Si) surfaces have been identified. The coexistence of oxygen and water or moisture is required for growth of native oxide both in air and in ultrapure water at room temperature. Layer‐by‐layer growth of native oxide films occurs on Si surfaces exposed to air. Growth of native oxides on n‐Si in ultrapure water is described by a parabolic law, while the native oxide film thickness on n +‐Si in ultrapure water saturates at 10 A. The native oxide growth on n‐Si in ultrapure water is continuously accompanied by a dissolution of Si into the water and degrades the atomic flatness at the oxide‐Si interface, producing a rough oxide surface. A dissolution of Si into the water has not been observed for the Si wafer having surface covered by the native oxide grown in air. Native oxides grown in air and in ultrapure de‐ionized water have been demonstrated experimentally to exhibit remarkable differences such as contact angles of ultrapure waterdrops and chemical binding energy. These chemical bond structures for native oxide filmsgrown in air and in ultrapure water are also discussed.

803 citations


Cited by
More filters
Journal ArticleDOI
28 Sep 2012-Science
TL;DR: A set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior are reported, together with integrated sensors, actuators, power supply systems, and wireless control strategies.
Abstract: A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.

1,026 citations

Journal ArticleDOI
TL;DR: Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of ∼200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in thevisible region.
Abstract: Strong resonant light scattering by individual spherical Si nanoparticles is experimentally demonstrated, revealing pronounced resonances associated with the excitation of magnetic and electric modes in these nanoparticles. It is shown that the low-frequency resonance corresponds to the magnetic dipole excitation. Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of ∼200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in the visible region.

932 citations

Proceedings ArticleDOI
05 Aug 1995
TL;DR: It appears that it will be difficult to overcome adhesion effects for the smallest parts, so manipulation of parts on the order of 10 micron or smaller may best be done in a fluid medium using techniques such as laser trapping, or dielectrophoresis.
Abstract: When parts to be handled are less than one millimeter in size, adhesive forces between gripper and object can be significant compared to gravitational forces. These adhesive forces arise primarily from surface tension, Van der Waals, and electrostatic attractions and can be a fundamental limitation to part handling in a gas environment. While it is possible to fabricate miniature versions of conventional robot grippers, for example from polysilicon, it appears that it will be difficult to overcome adhesion effects for the smallest parts. Thus, manipulation of parts on the order of 10 micron or smaller may best be done in a fluid medium using techniques such as laser trapping, or dielectrophoresis.

469 citations

Journal ArticleDOI
TL;DR: The I-V characteristics measured at 100, 300, and 400 K indicate that temperature strongly influences the ideality factor of graphene-silicon Schottky diodes, and the optical transparency of the thin graphene layer allows the underlying silicon substrate to absorb incident laser light and generate a photocurrent.
Abstract: We have fabricated graphene-silicon Schottky diodes by depositing mechanically exfoliated graphene on top of silicon substrates. The resulting current–voltage characteristics exhibit rectifying diode behavior with a barrier energy of 0.41 eV on n-type silicon and 0.45 eV on p-type silicon at the room temperature. The I–V characteristics measured at 100, 300, and 400 K indicate that temperature strongly influences the ideality factor of graphene–silicon Schottky diodes. The ideality factor, however, does not depend strongly on the number of graphene layers. The optical transparency of the thin graphene layer allows the underlying silicon substrate to absorb incident laser light and generate a photocurrent. Spatially resolved photocurrent measurements reveal the importance of inhomogeneity and series resistance in the devices.

457 citations

Journal ArticleDOI
12 Dec 2014-Science
TL;DR: Attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve the electron transfer from valence to conduction band states in semiconductors, and distinguished the electron dynamics—which proceed faster than a quadrillionth of a second after laser excitation—from the comparatively slower lattice motion of the silicon atomic nuclei.
Abstract: Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ~450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field–induced electron tunneling.

444 citations