scispace - formally typeset
Search or ask a question
Author

M. Ligier

Bio: M. Ligier is an academic researcher. The author has contributed to research in topics: Serotonergic cell groups & Raphe. The author has an hindex of 1, co-authored 1 publications receiving 266 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: The differential projections from the dorsal raphe and median raphe nuclei of the midbrain were autoradiographically traced in the rat brain after 3H‐proline micro‐injections to identify six ascending fiber tracts.
Abstract: The differential projections from the dorsal raphe and median raphe nuclei of the midbrain were autoradiographically traced in the rat brain after 3H-proline micro-injections. Six ascending fiber tracts were identified, the dorsal raphe nucleus being the sole source of four tracts and sharing one with the median raphe nucleus. The tracts can be classified as those lying within the medial forebrain bundle (dorsal raphe forebrain tract and the median raphe forebrain tract) and those lying entirely outside (dorsal raphe arcuate tract, dorsal raphe periventricular tract, dorsal raphe cortical tract, and raphe medial tract). The dorsal raphe forebrain tract lies in the ventrolateral aspect of the medial forebrain bundle (MFB) and projects mainly to lateral forebrain areas (e.g., basal ganglion, amygdala, and the pyriform cortex). The median raphe forebrain tract lies in the ventromedial aspect of the MFB and projects to medial forebrain areas (e.g., cingulate cortex, medial septum, and hippocampus). The dorsal raphe cortical tract lies ventrolaterally to the medial longitudinal fasciculus and projects to the caudate-putamen and the parieto-temporal cortex. The dorsal raphe periventricular tract lies immediately below the midbrain aqueduct and projects rostrally to the periventricular region of the thalamus and hypothalamus. The dorsal raphe arcuate tract curves laterally from the dorsal raphe nucleus to reach the ventrolateral edge of the midbrain and projects to ventrolateral geniculate body nuclei and the hypothalamic suprachiasmatic nuclei. Finally, the raphe medial tract receives fibers from both the median and dorsal raphe nuclei and runs ventrally between the fasciculus retroflexus and projects to the interpeduncular nucleus and the midline mammillary body. Further studies were done to test whether the fiber tracts travelling in the MFB contained 5-HT. Unilateral (left) injections of 5,7-dihydroxytryptamine (5 μgm/400 nl) 18 days before midbrain raphe microinjections of 3H-proline produced a reduction in the grain concentrations in all the ascending fibers within the MFB. Furthermore, pharmacological and behavioural evidence was obtained to show that the 5-HT system had been unilaterally damaged; these animals displayed preferential ipsilateral turning in a rotameter which was strongly reversed to contralateral turning after 5-hydroxytryptophan administration. The results show that DR and MR nuclei have numerous ascending projections whose axons contain the transmitter 5-HT. The results agree with the neuroanatomical distribution of the 5-HT system previously determined biochemically, histochemically, and neurophysiologically. The midbrain serotonin system seems to be organized by a series of fiber pathways. The fast transport rate in these fibers was found to be about 108 mm/day.

1,895 citations

Journal ArticleDOI
TL;DR: The VTA contains the A10 group of DA containing neurons, which have been grouped into nuclei to be found on the floor of the midbrain tegmentum--Npn, Nif, Npbp and Nln rostralis and caudalis and the role of the VTA as a mediator of dialogue with the frontostriatal and limbic/extrapyramidal system is discussed.

906 citations

Journal ArticleDOI
TL;DR: The ascending projections of serotonin neurons of the midbrain raphe were analyzed in the rat using the autoradiographic tracing method and a number of fibers leave the major group to ascend along the fasciculus retroflexus.
Abstract: The ascending projections of serotonin neurons of the midbrain raphe were analyzed in the rat using the autoradiographic tracing method. Axons of raphe serotonin neurons ascend in the ventral tegmental area and enter the medial forebrain bundle. A number of fibers leave the major group to ascend along the fasciculus retroflexus. Some fibers enter the habenula but the majority turn rostrally in the internal medullary lamina of the thalamus to innervate dorsal thalamus. Two additional large projections leave the medial forebrain bundle in the hypothalamus; the ansa peduncularis-ventral amygdaloid bundle system turns laterally through the internal capsule into the striatal complex, amygdala and the external capsule to reach lateral and posterior cortex, and another system of fibers turns medially to innervate medial hypothalamus and median eminence and form a contrelateral projection via the supraoptic commissures. Rostrally the major group in the medial forebrain bundle divides into several components: fibers entering the stria medullaris to terminate in thalamus; fibers entering the stria terminalis to terminate in the amygdala; fibers traversing the fornix to the hippocampus; fibers running through septum to enter the cingulum and terminate in dorsal and medial cortex and in hippocampus; fibers entering the external capsule to innervate rostral and lateral cortex; and fibers continuing forward in the medial olfactory stria to terminate in the anterior olfactory nucleus and olfactory bulb.

793 citations

Journal ArticleDOI
TL;DR: Ascending projections from the dorsal raphe nucleus were examined in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin (PHA‐L).
Abstract: Ascending projections from the dorsal raphe nucleus (DR) were examined in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). The majority of labeled fibers from the DR ascended through the forebrain within the medial forebrain bundle. DR fibers were found to terminate heavily in several subcortical as well as cortical sites. The following subcortical nuclei receive dense projections from the DR: ventral regions of the midbrain central gray including the 'supraoculomotor central gray' region, the ventral tegmental area, the substantia nigra-pars compacta, midline and intralaminar nuclei of the thalamus including the posterior paraventricular, the parafascicular, reuniens, rhomboid, intermediodorsal/mediodorsal, and central medial thalamic nuclei, the central, lateral and basolateral nuclei of the amygdala, posteromedial regions of the striatum, the bed nucleus of the stria terminalis, the lateral septal nucleus, the lateral preoptic area, the substantia innominata, the magnocellular preoptic nucleus, the endopiriform nucleus, and the ventral pallidum. The following subcortical nuclei receive moderately dense projections from the DR: the median raphe nucleus, the midbrain reticular formation, the cuneiform/pedunculopontine tegmental area, the retrorubral nucleus, the supramammillary nucleus, the lateral hypothalamus, the paracentral and central lateral intralaminar nuclei of the thalamus, the globus pallidus, the medial preoptic area, the vertical and horizontal limbs of the diagonal band nuclei, the claustrum, the nucleus accumbens, and the olfactory tubercle. The piriform, insular and frontal cortices receive dense projections from the DR; the occipital, entorhinal, perirhinal, frontal orbital, anterior cingulate, and infralimbic cortices, as well as the hippocampal formation, receive moderately dense projections from the DR. Some notable differences were observed in projections from the caudal DR and the rostral DR. For example, the hippocampal formation receives moderately dense projections from the caudal DR and essentially none from the rostral DR. On the other hand, virtually all neocortical regions receive significantly denser projections from the rostral than from the caudal DR. The present results demonstrate that dorsal raphe fibers project significantly throughout widespread regions of the midbrain and forebrain.

789 citations