scispace - formally typeset
Search or ask a question
Author

M. Lubecke

Bio: M. Lubecke is an academic researcher from University of Hawaii at Manoa. The author has contributed to research in topics: Heartbeat & Noise (radio). The author has an hindex of 1, co-authored 1 publications receiving 250 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A Ka-band transceiver using low-power double-sideband transmission to detect human heartbeat and respiration signals is demonstrated, and the detection accuracy is significantly improved with low transmitted power.
Abstract: A Ka-band transceiver using low-power double-sideband transmission to detect human heartbeat and respiration signals is demonstrated. The Ka-band electromagnetic wave offers higher detection sensitivity on small movement due to its shorter wavelength. Indirect-conversion receiver architecture is chosen to reduce the dc offset and 1/f noise that can degrade the signal-to-noise ratio and detection accuracy. Furthermore, the double-sideband signals at the transmitter output can be in quadrature by choosing a proper frequency separation to relieve the severe null point problem that occurs at high frequency. As a result,the detection accuracy is significantly improved with low transmitted power. This radar sensor system achieves better than 80% detection accuracy at a distance of 2.0 m with a combined transmitted power of only 12.5 /spl mu/W in both sidebands.

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews recent advances in biomedical and healthcare applications of Doppler radar that remotely detects heartbeat and respiration of a human subject and reviews different architectures, baseband signal processing, and system implementations.
Abstract: This paper reviews recent advances in biomedical and healthcare applications of Doppler radar that remotely detects heartbeat and respiration of a human subject. In the last decade, new front-end architectures, baseband signal processing methods, and system-level integrations have been proposed by many researchers in this field to improve the detection accuracy and robustness. The advantages of noncontact detection have drawn interests in various applications, such as energy smart home, baby monitor, cardiopulmonary activity assessment, and tumor tracking. While many of the reported systems were bench-top prototypes for concept verification, several portable systems and integrated radar chips have been demonstrated. This paper reviews different architectures, baseband signal processing, and system implementations. Validations of this technology in a clinical environment will also be discussed.

625 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a method for calibrating the dc offset while preserving the dc information and capturing the motion-related signal with maximum resolution, which resulted in a significant improvement in heart rate measurement accuracy over quadrature channel selection with a standard deviation of less than 1 beat/min
Abstract: Direct-conversion microwave Doppler radar can be used to detect cardiopulmonary activity at a distance. One challenge for such detection in single channel receivers is demodulation sensitivity to target position, which can be overcome by using a quadrature receiver. This paper presents a mathematical analysis and experimental results demonstrating the effectiveness of arctangent demodulation in quadrature receivers. A particular challenge in this technique is the presence of dc offset resulting from receiver imperfections and clutter reflections, in addition to dc information related to target position and associated phase. These dc components can be large compared to the ac motion-related signal, and thus, cannot simply be included in digitization without adversely affecting resolution. Presented here is a method for calibrating the dc offset while preserving the dc information and capturing the motion-related signal with maximum resolution. Experimental results demonstrate that arctangent demodulation with dc offset compensation results in a significant improvement in heart rate measurement accuracy over quadrature channel selection, with a standard deviation of less than 1 beat/min

509 citations

Journal ArticleDOI
TL;DR: It is shown that if the dc offset of the baseband signal is accurately calibrated, both demodulation techniques can be used for random body movement cancellation in quadrature Doppler radar noncontact vital sign detection.
Abstract: The complex signal demodulation and the arctangent demodulation are studied for random body movement cancellation in quadrature Doppler radar noncontact vital sign detection. This technique can be used in sleep apnea monitor, lie detector, and baby monitor to eliminate the false alarm caused by random body movement. It is shown that if the dc offset of the baseband signal is accurately calibrated, both demodulation techniques can be used for random body movement cancellation. While the complex signal demodulation is less likely to be affected by a dc offset, the arctangent demodulation has the advantage of eliminating harmonic and intermodulation interference at high carrier frequencies. When the dc offset cannot be accurately calibrated, the complex signal demodulation is more favorable. Ray-tracing model is used to show the effects of constellation deformation and optimum/null detection ambiguity caused by the phase offset due to finite antenna directivity. Experiments have been performed using 4-7 GHz radar to verify the theory.

386 citations

Journal ArticleDOI
TL;DR: This paper reviews recent progress of portable short-range noncontact microwave radar systems for motion detection, positioning, and imaging applications and discusses potential future developments for the next-generation portable smart radar systems.
Abstract: This paper reviews recent progress of portable short-range noncontact microwave radar systems for motion detection, positioning, and imaging applications. With the continuous advancements of modern semiconductor technologies and embedded computing, many functionalities that could only be achieved by bulky radar systems in the past are now integrated into portable devices with integrated circuit chips and printed circuits boards. These portable solutions are able to provide high motion detection sensitivity, excellent signal-to-noise ratio, and satisfactory range detection capability. Assisted by on-board signal processing algorithms, they can play important roles in various areas, such as health and elderly care, veterinary monitoring, human-computer interaction, structural monitoring, indoor tracking, and wind engineering. This paper reviews some system architectures and practical implementations for typical wireless sensing applications. It also discusses potential future developments for the next-generation portable smart radar systems.

269 citations

Journal ArticleDOI
04 Dec 2006
TL;DR: In this article, the authors analyzed the harmonics observed in phase-modulated Ka-band Doppler radar, explaining the reason for better heartrate accuracy when detected from the back of the body.
Abstract: The accuracy of a Ka-band physiological movement detector was tested and compared for measurements from four different body orientations and at five different distances. A rigorous spectral analysis approach is developed when previously adopted small-angle approximation model is not applicable. This theory analyzes in detail the harmonics observed in phase-modulated Ka-band Doppler radar, explaining the reason for better heart-rate accuracy when detected from the back of the body. It also explains the advantage of double-sideband transmission in avoiding the null point problem. Simulations have been performed to illustrate this theory and provide design guidelines for the system. This theory has also been verified by experiments

237 citations