scispace - formally typeset
Search or ask a question
Author

M Maarten Steinbuch

Bio: M Maarten Steinbuch is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Control theory & Feed forward. The author has an hindex of 51, co-authored 630 publications receiving 11892 citations. Previous affiliations of M Maarten Steinbuch include Nanyang Technological University & Delft University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The massive potential of SAEVs to lower both the cost and the environmental impact of the mobility sector is indicated, and there would be 80% to 90% less vehicles required in such a situation, and the vast majority would be one-person vehicles.
Abstract: Exploring the impact of full adoption of fit-for-demand shared and autonomous electric vehicles on the passenger vehicle fleet of a society. Shared Eutonomous Electric Vehicles (SAEVs) are expected to have a disruptive impact on the mobility sector. Reduced cost for mobility and increased accessibility will induce new mobility demand and the vehicles that provide it will be fit-for-demand vehicles. Both these aspects have been qualitatively covered in recent research, but there have not yet been attempts to quantify fleet compositions in scenarios where passenger transport is dominated by fit-for-demand, one-person autonomous vehicles. To quantify the composition of the future vehicle fleet when all passenger vehicles are autonomous, shared and fit-for-demand and where cheap and accessible mobility has significantly increased the mobility demand. An agent-based model is developed to model detailed travel dynamics of a large population. Numerical data is used to mimic actual driving motions in the Netherlands. Next, passenger vehicle trips are changed to trips with fit-for-demand vehicles, and new mobility demand is added in the form of longer tips, more frequent trips, modal shifts from public transport, redistribution of shared vehicles, and new user groups. Two scenarios are defined for the induced mobility demand from SAEVs, one scenario with limited increased mobility demand, and one scenario with more than double the current mobility demand. Three categories of fit-for-demand vehicles are stochastically mapped to all vehicle trips based on each trip's characteristics. The vehicle categories contain two one-person vehicle types and one multi-person vehicle type. The simulations show that at full adoption of SAEVs, the maximum daily number of passenger vehicles on the road increases by 60% to 180%. However, the total fleet size could shrink by up to 90% if the increase in mobility demand is limited. An 80% reduction in fleet size is possible at more than doubling the current mobility demand. Additionally, about three-quarters of the SAEVs can be small one-person vehicles. Full adoption of fit-for-demand SAEVs is expected to induce new mobility demand. However, the results of this research indicate that there would be 80% to 90% less vehicles required in such a situation, and the vast majority would be one-person vehicles. Such vehicles are less resource-intense and, because of their size and electric drivetrains, are significantly more energy-efficient than the average current-day vehicle. This research indicates the massive potential of SAEVs to lower both the cost and the environmental impact of the mobility sector. Quantification of these environmental benefits and reduced mobility costs are proposed for further research.

5 citations

Proceedings ArticleDOI
01 Jan 2004
TL;DR: This paper presents an approach based on hierarchical clustering of measured signals that are affected by disc defects that can be used for (on-line) classification of new disc defects.
Abstract: Optical disc drives are subject to various disturbances and faults. A special type of fault is the so-called disc defect. In this paper we present an approach for disc defect classification. It is based on hierarchical clustering of measured signals that are affected by disc defects. The time-series are mapped into a feature space after which the feature vectors are clustered in a hierarchical fashion. Finally, signals are fitted onto the clusters to obtain single representations for each fault class. The resulting class descriptions can then be used for (on-line) classification of new disc defects. The approach is evaluated by applying it to a set of test data.

5 citations

Proceedings ArticleDOI
01 Jan 2018
TL;DR: The regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, and the dynamical variation of the regenerative brake efficiency is considered in this study to obtain optimal gear ratios of a two-speed transmission system.
Abstract: In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle. The energy economy of the case-study vehicle with the optimized a two-speed transmission is also compared to that of the baseline vehicle with fixed-ratio reduction gear.

5 citations

Journal ArticleDOI
TL;DR: In this article, a control design approach for robust sheet control in a printer paper path is presented in terms of a hierarchical control set-up with a low level motor control part and a high level sheet control part.

5 citations

Proceedings ArticleDOI
19 Sep 2005
TL;DR: In this paper, a new approach is proposed which combines both data representations into one controller design method such that loop-shaping in an extended form can be used to place closed-loop poles.
Abstract: Manual design of feedback-controllers based on frequency-domain data is often used in industry to design low-order SISO controllers based on experimental data. Such design approaches are often either based on a data representation in the pole-zero plane, i.e. root-locus approaches, or a representation of the open-loop frequency response function (FRF), i.e. shaping of the sensitivity function. Both data representations however are not explicitly coupled during tuning to combine the advantages of both design methods. A new approach is proposed which combines both data representations into one controller design method such that loop-shaping in an extended form can be used to place closed-loop poles. By means of generalized stability, performance demands given in the pole-zero plane can be linked to phase and gain specification of the open-loop transfer-function. As a result, this method generalizes and refines the well known loop-shaping approach. Simulations and experiments with a two-mass-spring system show that transient behavior can be improved significantly compared to controllers that are designed on FRF data only

5 citations


Cited by
More filters
Book
05 Oct 1997
TL;DR: In this article, the authors introduce linear algebraic Riccati Equations and linear systems with Ha spaces and balance model reduction, and Ha Loop Shaping, and Controller Reduction.
Abstract: 1. Introduction. 2. Linear Algebra. 3. Linear Systems. 4. H2 and Ha Spaces. 5. Internal Stability. 6. Performance Specifications and Limitations. 7. Balanced Model Reduction. 8. Uncertainty and Robustness. 9. Linear Fractional Transformation. 10. m and m- Synthesis. 11. Controller Parameterization. 12. Algebraic Riccati Equations. 13. H2 Optimal Control. 14. Ha Control. 15. Controller Reduction. 16. Ha Loop Shaping. 17. Gap Metric and ...u- Gap Metric. 18. Miscellaneous Topics. Bibliography. Index.

3,471 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: Though beginning its third decade of active research, the field of ILC shows no sign of slowing down and includes many results and learning algorithms beyond the scope of this survey.
Abstract: This article surveyed the major results in iterative learning control (ILC) analysis and design over the past two decades. Problems in stability, performance, learning transient behavior, and robustness were discussed along with four design techniques that have emerged as among the most popular. The content of this survey was selected to provide the reader with a broad perspective of the important ideas, potential, and limitations of ILC. Indeed, the maturing field of ILC includes many results and learning algorithms beyond the scope of this survey. Though beginning its third decade of active research, the field of ILC shows no sign of slowing down.

2,645 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes an LSTM model which can learn general human movement and predict their future trajectories and outperforms state-of-the-art methods on some of these datasets.
Abstract: Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.

2,587 citations

Journal ArticleDOI
TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

2,391 citations