scispace - formally typeset
Search or ask a question
Author

M Maarten Steinbuch

Bio: M Maarten Steinbuch is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Control theory & Feed forward. The author has an hindex of 51, co-authored 630 publications receiving 11892 citations. Previous affiliations of M Maarten Steinbuch include Nanyang Technological University & Delft University of Technology.


Papers
More filters
01 Jan 2004
TL;DR: In this paper, two techniques are described to measure the changes in dynamics due to friction as a function of drive level in an electric motor, one based on FFT and another based on IQ (in phase/quadrature phase) demodulation.
Abstract: For high precision motion systems, modelling and control design specifically oriented at friction effects is instrumental. The Sinusoidal Input Describing Function theory represents a solid mathematical framework for analysing non-linear system behaviour. This theory however limits the description of the non-linear system behaviour to an approximated linear relation between sinusoidal excitation and sinusoidal response. An extension to Higher Order Describing Functions can be realised by calculating the corresponding Fourier coefficients. The resulting Higher Order Sinusoidal Input Describing Functions (HOSIDFs) relate the magnitude and phase of the higher harmonics of the periodic system response to the magnitude and phase of a sinusoidal excitation. This paper describes two techniques to measure HOSIDFs. The first technique is FFT based. The second technique is based on IQ (=in phase/quadrature phase) demodulation. In a case study both techniques are used to measure the changes in dynamics due to friction as function of drive level in an electric motor.

3 citations

Journal ArticleDOI
TL;DR: In this article, a modular model for the hydraulic actuation system on the basis of first principles is constructed and validated, which is characterized by a relatively low complexity and a reasonably high accuracy.
Abstract: A reduction in the fuel consumption of a passenger car with a pushbelt continuously variable transmission (CVT) can be established via optimization of the hydraulic actuation system. This requires a model of the dynamic characteristics with low complexity and high accuracy, e.g., for closed-loop control design, for closed-loop simulation, and for optimization of design parameters. The hydraulic actuation system includes a large number of hydraulic components and a model of the dynamic characteristics is scarce, which is caused by the complexity, the nonlinearity, and the necessity of a large number of physical parameters that are uncertain or unknown. In this paper, a modular model for the hydraulic actuation system on the basis of first principles is constructed and validated, which is characterized by a relatively low complexity and a reasonably high accuracy. A modular approach is pursued with respect to the first principles models of the hydraulic components, i.e., a hydraulic pump, spool valves, proportional solenoid valves, channels, and hydraulic cylinders, which reduces complexity and improves transparency. The model parameters are either directly provided, directly measured, or identified. The model of the hydraulic actuation system is composed of the models of the hydraulic components and is experimentally validated by means of measurements that are obtained from a production pushbelt CVT. Several experiment types are considered. The correspondence between the measured and simulated responses is fairly good.

3 citations

Proceedings Article
01 Jan 2012
TL;DR: A global planning architecture is conceptualized, based on the worldwide accessible RoboEarth cloud framework, that allows environmental state inference and plan monitoring on a global level and allows semantic matching of robot capabilities with previously composed plans.
Abstract: As robotic systems become more and more capable of assisting in human domains, methods are sought to compose robot executable plans from abstract human instructions. To cope with the semantically rich and highly expressive nature of human instructions, Hierarchical Task Network planning is often being employed along with domain knowledge to solve planning problems in a pragmatic way. Commonly, the domain knowledge is specific to the planning problem at hand, impeding re-use. Therefore this paper conceptualizes a global planning architecture, based on the worldwide accessible RoboEarth cloud framework. This architecture allows environmental state inference and plan monitoring on a global level. To enable plan re-use for future requests, the RoboEarth action language has been adapted to allow semantic matching of robot capabilities with previously composed plans.

3 citations

Journal ArticleDOI
TL;DR: A method to design a non-linear state feedback controller that meets a set of time-domain specifications not attainable by linear state feedback, using a constrained polynomial interpolation technique.
Abstract: This article describes a method to design a non-linear state feedback controller that meets a set of time-domain specifications not attainable by linear state feedback. Using a constrained polynomial interpolation technique, an input signal is computed that satisfies the desired time-domain constraints on the input and state-trajectories. The computed input is constructed by non-linear combinations of the states, such that a non-linear state feedback law is obtained. Stability of the resulting closed-loop polynomial system is analysed using sum-of-squares techniques. An illustrative example is presented, showing that the proposed non-linear controller outperforms the best linear static state feedback. To validate the proposed method, experiments on a fourth-order motion system have been carried out.

3 citations

Proceedings ArticleDOI
09 Jul 2007
TL;DR: The multivariable disturbance model is used to design non- diagonal weighting filters for Hinfin control and it is demonstrated that intuitive shaping of the directions of closed loop transfer functions is facilitated, maximally exploiting design freedom that has no analogue for scalar systems.
Abstract: In this paper, a blind identification method is employed to model multivariable disturbances with fixed direction. The multivariable disturbance model is used to design non- diagonal weighting filters for Hinfin control. It is demonstrated that in this way, intuitive shaping of the directions of closed loop transfer functions is facilitated, maximally exploiting design freedom that has no analogue for scalar systems.

3 citations


Cited by
More filters
Book
05 Oct 1997
TL;DR: In this article, the authors introduce linear algebraic Riccati Equations and linear systems with Ha spaces and balance model reduction, and Ha Loop Shaping, and Controller Reduction.
Abstract: 1. Introduction. 2. Linear Algebra. 3. Linear Systems. 4. H2 and Ha Spaces. 5. Internal Stability. 6. Performance Specifications and Limitations. 7. Balanced Model Reduction. 8. Uncertainty and Robustness. 9. Linear Fractional Transformation. 10. m and m- Synthesis. 11. Controller Parameterization. 12. Algebraic Riccati Equations. 13. H2 Optimal Control. 14. Ha Control. 15. Controller Reduction. 16. Ha Loop Shaping. 17. Gap Metric and ...u- Gap Metric. 18. Miscellaneous Topics. Bibliography. Index.

3,471 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: Though beginning its third decade of active research, the field of ILC shows no sign of slowing down and includes many results and learning algorithms beyond the scope of this survey.
Abstract: This article surveyed the major results in iterative learning control (ILC) analysis and design over the past two decades. Problems in stability, performance, learning transient behavior, and robustness were discussed along with four design techniques that have emerged as among the most popular. The content of this survey was selected to provide the reader with a broad perspective of the important ideas, potential, and limitations of ILC. Indeed, the maturing field of ILC includes many results and learning algorithms beyond the scope of this survey. Though beginning its third decade of active research, the field of ILC shows no sign of slowing down.

2,645 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes an LSTM model which can learn general human movement and predict their future trajectories and outperforms state-of-the-art methods on some of these datasets.
Abstract: Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.

2,587 citations

Journal ArticleDOI
TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

2,391 citations