scispace - formally typeset
Search or ask a question
Author

M Maarten Steinbuch

Bio: M Maarten Steinbuch is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Control theory & Feed forward. The author has an hindex of 51, co-authored 630 publications receiving 11892 citations. Previous affiliations of M Maarten Steinbuch include Nanyang Technological University & Delft University of Technology.


Papers
More filters
Proceedings ArticleDOI
12 May 2008
TL;DR: A novel method is presented for the reduction of bias caused by harmonic excitation in the identification of higher order sinusoidal input describing functions (HOSIDF) and is demonstrated with real measurements on a mechanical system with friction.
Abstract: In this paper a novel method is presented for the reduction of bias caused by harmonic excitation in the identification of higher order sinusoidal input describing functions (HOSIDF). HOSIDF are a recently introduced generalization of the theory of the describing function. HOSIDF describe the magnitude and phase relations between the individual harmonic components in the output signal of a non-linear system and the sinusoidal excitation signal. In the presented method, the output signal of a non-linear system subjected to harmonic excitation is numerically split up into a fraction caused by the non-linear response due to the fundamental input signal component and the fraction caused by the quasi-linear response due to the harmonic input signal components. This separation is based on the assumption that the non-linear effects of intermodulation can be neglected, compared to the the effects caused by the generation of harmonics and gain compression/expansion. The method is demonstrated with real measurements on a mechanical system with friction.

2 citations

Journal ArticleDOI
TL;DR: In this paper, a sub-micrometer accurate multi-fiber array is proposed, where fibers are actively aligned with respect to each other and fixated to a flat carrier using ultraviolet-curable adhesive.
Abstract: The alignment and fixation of multiple single-mode optical fibers to photonic integrated circuits is currently a challenging, expensive, and time-consuming task. In this paper, we present a concept for a sub-micrometer accurate multi-fiber array, where fibers are actively aligned with respect to each other and fixated to a flat carrier using ultraviolet-curable adhesive. Adhesives are prone to shrinkage, which can disturb the fiber alignment. As a result, especially, the fixation process forms the bottleneck in reaching the required alignment and not the alignment process itself. Simulations are performed to investigate the sensitivity of process variables on the adhesive bond geometry, which is important for the shrinkage amplitude. Furthermore, an experimental setup has been designed and fabricated to measure the shrinkage-induced fiber displacement for three selected types of adhesives. The results show a controllable adhesive shrinkage, where fibers can be aligned with a position reproducibility of $\pm {\text{40}}$ nm, which is more than sufficient for the most critical fiber alignment applications. With this concept, an important step can be made in enabling sub-micrometer accurate photonic interconnects in a cost-effective way, which is suitable for automated production.

2 citations

Journal ArticleDOI
TL;DR: In this article, a design method is presented to design multivariable centralized controllers to reject disturbances only in relevant directions, where the frequency domain tradeoffs in multivariability control motivate a design where the directions of disturbance are considered explicitly.

2 citations

Journal Article
TL;DR: A compact, lightweight, easy to setup robotic master-slave system has been realized to perform vitreo-retinal eye surgery, and its reach covers the major part of the vitreous cavity.
Abstract: Purpose:Developments in vitreo-retinal eye surgery are limited by human capabilities. To improve current vitreo-retinal surgical procedures and to enable new procedures, a robotic system has been developed, extending human capabilities. Methods:A compact, lightweight, easy to setup robotic master-slave system has been realized to perform vitreo-retinal eye surgery (Slave see Figure 1, Master see Figure 2). The system’s reach covers the major part of the vitreous cavity (up to the peripheral region). A combination of advanced mechanical and control design facilitates high accuracy (

2 citations


Cited by
More filters
Book
05 Oct 1997
TL;DR: In this article, the authors introduce linear algebraic Riccati Equations and linear systems with Ha spaces and balance model reduction, and Ha Loop Shaping, and Controller Reduction.
Abstract: 1. Introduction. 2. Linear Algebra. 3. Linear Systems. 4. H2 and Ha Spaces. 5. Internal Stability. 6. Performance Specifications and Limitations. 7. Balanced Model Reduction. 8. Uncertainty and Robustness. 9. Linear Fractional Transformation. 10. m and m- Synthesis. 11. Controller Parameterization. 12. Algebraic Riccati Equations. 13. H2 Optimal Control. 14. Ha Control. 15. Controller Reduction. 16. Ha Loop Shaping. 17. Gap Metric and ...u- Gap Metric. 18. Miscellaneous Topics. Bibliography. Index.

3,471 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: Though beginning its third decade of active research, the field of ILC shows no sign of slowing down and includes many results and learning algorithms beyond the scope of this survey.
Abstract: This article surveyed the major results in iterative learning control (ILC) analysis and design over the past two decades. Problems in stability, performance, learning transient behavior, and robustness were discussed along with four design techniques that have emerged as among the most popular. The content of this survey was selected to provide the reader with a broad perspective of the important ideas, potential, and limitations of ILC. Indeed, the maturing field of ILC includes many results and learning algorithms beyond the scope of this survey. Though beginning its third decade of active research, the field of ILC shows no sign of slowing down.

2,645 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes an LSTM model which can learn general human movement and predict their future trajectories and outperforms state-of-the-art methods on some of these datasets.
Abstract: Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.

2,587 citations

Journal ArticleDOI
TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Abstract: Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key challenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how reinforcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

2,391 citations