scispace - formally typeset
Search or ask a question
Author

M. Manzar Malik

Bio: M. Manzar Malik is an academic researcher from Maulana Azad National Institute of Technology. The author has contributed to research in topics: Dielectric & Bismuth titanate. The author has an hindex of 16, co-authored 51 publications receiving 782 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed X-ray diffraction analysis was carried out to evaluate the contribution of dopant ion concentration on strain and lattice parameters for pristine and doped ZnO nanopowders.

94 citations

Journal ArticleDOI
TL;DR: Opracowanie ze środkow MNiSW w ramach umowy 812/P-DUN/2016 na dzialalnośc upowszechniającą nauke (zadania 2017).
Abstract: Opracowanie ze środkow MNiSW w ramach umowy 812/P-DUN/2016 na dzialalnośc upowszechniającą nauke (zadania 2017).

84 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study on the sodium doping-induced modifications in the copper oxide (CuO) nanostructure and its properties was performed, where a facile and sustainable sol-gel synthesis approach was employed for the preparation of high-quality pristine CuO-and Na-doped CuO nanostructures.
Abstract: In the present paper, we report a detailed study on the sodium (Na) doping-induced modifications in the copper oxide (CuO) nanostructure and its properties. A facile and sustainable sol–gel synthesis approach was employed for the preparation of high-quality pristine CuO- and Na-doped CuO nanostructures(1.0, 3.0, 5.0 and 7.0 mol% doping levels, CuO/Na) with controlled shape and composition. Due to the remarkable difference in the ionic radii of Cu2+ (0.73 A) and Na+ (1.02 A), Na+ substitution in place of Cu2+ generates strain/distortions in CuO lattice. The XRD analysis reveal the structural alteration from monoclinic to cubic symmetry with increase in doping level and also reveal the phase purity up to 3% doping level, and beyond this (i.e., for 5 and 7% doping level) small amount of impurity phase corresponding to Na2O was observed. The FTIR results further confirmed the presence of the Na–Cu–O stretching vibrations at higher Na-doped samples. Morphology of the samples indicates that the Na-doped CuO nanostructures exhibit less agglomeration compared to pristine CuO nanoparticles. The presence of Na in CuO lattice were found to greatly enhances optical and electrical properties owing to the formation of defects like copper vacancies and oxygen vacancies at the grain boundaries of the nanoparticles with increased doping of Na.

74 citations

Journal ArticleDOI
TL;DR: In this paper, historical background of mesoporous silica materials and methods which are used to synthesize these materials such as sol-gel method, microwave assisted technique, chemical etching technique, templating approach are discussed.

66 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of Eu 3+ doping in the present host is also studied, where non-shifting T m property is applied to define the order of kinetics and is thereafter assumed as 1. T m −−− T stop procedure and repeated initial rise method are applied to estimate apparent activation energies and peak positions.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Abstract: Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol–gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual...

841 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of non-Eu2+-based persistent luminescent materials and their afterglow properties and take a closer look at some remaining challenges, such as the excitability with visible light and the possibility of energy transfer between multiple luminaries.
Abstract: During the past few decades, the research on persistent luminescent materials has focused mainly on Eu2+-doped compounds. However, the yearly number of publications on non-Eu2+-based materials has also increased steadily. By now, the number of known persistent phosphors has increased to over 200, of which over 80% are not based on Eu2+, but rather, on intrinsic host defects, transition metals (manganese, chromium, copper, etc.) or trivalent rare earths (cerium, terbium, dysprosium, etc.). In this review, we present an overview of these non-Eu2+-based persistent luminescent materials and their afterglow properties. We also take a closer look at some remaining challenges, such as the excitability with visible light and the possibility of energy transfer between multiple luminescent centers. Finally, we summarize the necessary elements for a complete description of a persistent luminescent material, in order to allow a more objective comparison of these phosphors.

517 citations

Journal ArticleDOI
TL;DR: This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells, and some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented.
Abstract: The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

305 citations

Posted Content
TL;DR: In this article, the enhancement of ferromagnetism in pure ZnO upon thermal annealing with the ferromagnetic transition temperature Tc above room temperature has been reported.
Abstract: We report here enhancement of ferromagnetism in pure ZnO upon thermal annealing with the ferromagnetic transition temperature Tc above room temperature. We observe a finite coercive field upto 300K and a finite thermoremanent magnetization upto 340K for the annealed sample. We propose that magnetic moments can form at anionic vacancy clusters. Ferromagnetism can occur due to either superexchange between vacancy clusters via isolated F+ centers, or through a limited electron delocalization between vacancy clusters. Isolated vacancy clusters or isolated F+ centers give rise to a strong paramagnetic like behaviour below 10K.

274 citations

Journal Article
TL;DR: In this paper, a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with the nanostructure of the oxides of copper is presented.
Abstract: The oxides of copper (CuxO) are fascinating materials due to their remarkable optical, electrical, thermal and magnetic properties. Nanostructuring of CuxO can further enhance the performance of this important functional material and provide it with unique properties that do not exist in its bulk form. Three distinctly different phases of CuxO, mainly CuO, Cu2O and Cu4O3, can be prepared by numerous synthesis techniques including, vapour deposition and liquid phase chemical methods. In this article, we present a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with nanostructured CuxO.

262 citations