scispace - formally typeset
Search or ask a question
Author

M. Margarita Behrens

Bio: M. Margarita Behrens is an academic researcher from Salk Institute for Biological Studies. The author has contributed to research in topics: Parvalbumin & Chromatin. The author has an hindex of 39, co-authored 89 publications receiving 7718 citations. Previous affiliations of M. Margarita Behrens include University of California, San Diego & Mario Negri Institute for Pharmacological Research.


Papers
More filters
Journal ArticleDOI
09 Aug 2013-Science
TL;DR: The results extend the knowledge of the unique role of DNA methylation in brain development and function, and offer a new framework for testing the role of the epigenome in healthy function and in pathological disruptions of neural circuits.
Abstract: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.

1,629 citations

Journal ArticleDOI
TL;DR: The data suggest that IL-1β increases NMDA receptor function through activation of tyrosine kinases and subsequent NR2A/B subunit phosphorylation, which may contribute to glutamate-mediated neurodegeneration.
Abstract: Interleukin (IL)-1β is a proinflammatory cytokine implicated in various pathophysiological conditions of the CNS involving NMDA receptor activation. Circumstantial evidence suggests that IL-1β and NMDA receptors can functionally interact. Using primary cultures of rat hippocampal neurons, we investigated whether IL-1β affects NMDA receptor function(s) by studying (1) NMDA receptor-induced [Ca2+]i increase and (2) NMDA-mediated neurotoxicity. IL1β (0.01-0.1 ng/ml) dose-dependently enhances NMDA-induced [Ca2+]i increases with a maximal effect of ∼45%. This effect occurred only when neurons were pretreated with IL-1β, whereas it was absent if IL-1β and NMDA were applied simultaneously, and it was abolished by IL-1 receptor antagonist (50 ng/ml). Facilitation of NMDA-induced [Ca2+]i increase by IL-1β was prevented by both lavendustin (LAV) A (500 nm) and 4-amino-5-(4-chlorophenyl)-7-( t -butyl)pyrazolo[3,4-d]pyrimidine (PP2) (1 μm), suggesting an involvement of tyrosine kinases. Increased tyrosine phosphorylation of NMDA receptor subunits 2A and 2B and coimmunoprecipitation of activated Src tyrosine kinase with these subunits was observed after exposure of hippocampal neurons to 0.05 ng/ml IL-1β. Finally, 0.05 ng/ml IL-1β increased by ∼30% neuronal cell death induced by NMDA, and this effect was blocked by both lavendustin A and PP2. These data suggest that IL-1β increases NMDA receptor function through activation of tyrosine kinases and subsequent NR2A/B subunit phosphorylation. These effects may contribute to glutamate-mediated neurodegeneration.

810 citations

Journal ArticleDOI
07 Dec 2007-Science
TL;DR: It is shown that exposure of mice to ketamine induced a persistent increase in brain superoxide due to activation in neurons of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which suggests that NADPH oxidase may represent a novel target for the treatment of ketamine-induced psychosis.
Abstract: Abuse of the dissociative anesthetic ketamine can lead to a syndrome indistinguishable from schizophrenia. In animals, repetitive exposure to this N-methyl-d-aspartate-receptor antagonist induces the dysfunction of a subset of cortical fast-spiking inhibitory interneurons, with loss of expression of parvalbumin and the gamma-aminobutyric acid-producing enzyme GAD67. We show here that exposure of mice to ketamine induced a persistent increase in brain superoxide due to activation in neurons of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Decreasing superoxide production prevented the effects of ketamine on inhibitory interneurons in the prefrontal cortex. These results suggest that NADPH oxidase may represent a novel target for the treatment of ketamine-induced psychosis.

555 citations

Journal ArticleDOI
TL;DR: It is proposed that a decrease in intrinsic GABAergic signaling may be responsible, at least in part, for the prefrontal and hippocampal hypofunctionality observed during task performance, which is consistently observed in animal models as well as in schizophrenia in humans.
Abstract: Decreased GABAergic signaling is among the more robust pathologies observed postmortem in schizophrenia; however, the functional consequences of this deficit are still largely unknown. Here, we demonstrate, in a verified animal model of schizophrenia, that a reduced expression of parvalbumin (PV)-containing interneurons is correlated with a reduction in coordinated neuronal activity during task performance in freely moving rats. More specifically, methylazoxymethanol acetate (MAM)-treated rats display a decreased density of parvalbumin-positive interneurons throughout the medial prefrontal cortex (mPFC) and ventral (but not dorsal) subiculum of the hippocampus. Furthermore, the reduction in interneuron functionality is correlated with a significantly reduced gamma-band response to a conditioned tone during a latent inhibition paradigm. Finally, deficits in mPFC and ventral hippocampal oscillatory activity are associated with an impaired behavioral expression of latent inhibition in MAM-treated rats. Thus, we propose that a decrease in intrinsic GABAergic signaling may be responsible, at least in part, for the prefrontal and hippocampal hypofunctionality observed during task performance, which is consistently observed in animal models as well as in schizophrenia in humans. In addition, a deficit in intrinsic GABAergic signaling may be the origin of the hippocampal hyperactivity purported to underlie the dopamine dysfunction in psychosis. Such information is central to gaining a better understanding of the disease pathophysiology and alternate pharmacotherapeutic approaches.

440 citations

Journal ArticleDOI
11 Aug 2017-Science
TL;DR: A comprehensive map of methylation variation in neuronal cell populations, including a between-species comparison, illustrates how epigenetic diversity plays important roles in neuronal development.
Abstract: The mammalian brain contains diverse neuronal types, yet we lack single-cell epigenomic assays that are able to identify and characterize them. DNA methylation is a stable epigenetic mark that distinguishes cell types and marks regulatory elements. We generated >6000 methylomes from single neuronal nuclei and used them to identify 16 mouse and 21 human neuronal subpopulations in the frontal cortex. CG and non-CG methylation exhibited cell type–specific distributions, and we identified regulatory elements with differential methylation across neuron types. Methylation signatures identified a layer 6 excitatory neuron subtype and a unique human parvalbumin-expressing inhibitory neuron subtype. We observed stronger cross-species conservation of regulatory elements in inhibitory neurons than in excitatory neurons. Single-nucleus methylomes expand the atlas of brain cell types and identify regulatory elements that drive conserved brain cell diversity.

407 citations


Cited by
More filters
Journal ArticleDOI
13 Jun 2019-Cell
TL;DR: A strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities.

7,892 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
Anshul Kundaje1, Wouter Meuleman1, Wouter Meuleman2, Jason Ernst3, Misha Bilenky4, Angela Yen2, Angela Yen1, Alireza Heravi-Moussavi4, Pouya Kheradpour1, Pouya Kheradpour2, Zhizhuo Zhang1, Zhizhuo Zhang2, Jianrong Wang2, Jianrong Wang1, Michael J. Ziller2, Viren Amin5, John W. Whitaker, Matthew D. Schultz6, Lucas D. Ward1, Lucas D. Ward2, Abhishek Sarkar1, Abhishek Sarkar2, Gerald Quon2, Gerald Quon1, Richard Sandstrom7, Matthew L. Eaton1, Matthew L. Eaton2, Yi-Chieh Wu2, Yi-Chieh Wu1, Andreas R. Pfenning1, Andreas R. Pfenning2, Xinchen Wang1, Xinchen Wang2, Melina Claussnitzer1, Melina Claussnitzer2, Yaping Liu2, Yaping Liu1, Cristian Coarfa5, R. Alan Harris5, Noam Shoresh2, Charles B. Epstein2, Elizabeta Gjoneska2, Elizabeta Gjoneska1, Danny Leung8, Wei Xie8, R. David Hawkins8, Ryan Lister6, Chibo Hong9, Philippe Gascard9, Andrew J. Mungall4, Richard A. Moore4, Eric Chuah4, Angela Tam4, Theresa K. Canfield7, R. Scott Hansen7, Rajinder Kaul7, Peter J. Sabo7, Mukul S. Bansal2, Mukul S. Bansal10, Mukul S. Bansal1, Annaick Carles4, Jesse R. Dixon8, Kai How Farh2, Soheil Feizi2, Soheil Feizi1, Rosa Karlic11, Ah Ram Kim2, Ah Ram Kim1, Ashwinikumar Kulkarni12, Daofeng Li13, Rebecca F. Lowdon13, Ginell Elliott13, Tim R. Mercer14, Shane Neph7, Vitor Onuchic5, Paz Polak15, Paz Polak2, Nisha Rajagopal8, Pradipta R. Ray12, Richard C Sallari2, Richard C Sallari1, Kyle Siebenthall7, Nicholas A Sinnott-Armstrong1, Nicholas A Sinnott-Armstrong2, Michael Stevens13, Robert E. Thurman7, Jie Wu16, Bo Zhang13, Xin Zhou13, Arthur E. Beaudet5, Laurie A. Boyer1, Philip L. De Jager2, Philip L. De Jager15, Peggy J. Farnham17, Susan J. Fisher9, David Haussler18, Steven J.M. Jones4, Steven J.M. Jones19, Wei Li5, Marco A. Marra4, Michael T. McManus9, Shamil R. Sunyaev15, Shamil R. Sunyaev2, James A. Thomson20, Thea D. Tlsty9, Li-Huei Tsai1, Li-Huei Tsai2, Wei Wang, Robert A. Waterland5, Michael Q. Zhang21, Lisa Helbling Chadwick22, Bradley E. Bernstein15, Bradley E. Bernstein2, Bradley E. Bernstein6, Joseph F. Costello9, Joseph R. Ecker11, Martin Hirst4, Alexander Meissner2, Aleksandar Milosavljevic5, Bing Ren8, John A. Stamatoyannopoulos7, Ting Wang13, Manolis Kellis1, Manolis Kellis2 
19 Feb 2015-Nature
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

5,037 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
24 Jun 2021-Cell
TL;DR: Weighted-nearest neighbor analysis as mentioned in this paper is an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities.

3,369 citations