scispace - formally typeset
Search or ask a question
Author

M. Michael Yovanovich

Bio: M. Michael Yovanovich is an academic researcher from University of Waterloo. The author has contributed to research in topics: Thermal resistance & Thermal contact conductance. The author has an hindex of 51, co-authored 266 publications receiving 8769 citations. Previous affiliations of M. Michael Yovanovich include Massachusetts Institute of Technology & École nationale supérieure de mécanique et d'aérotechnique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider the resistance to the flow of heat between two thick solid bodies in contact in a vacuum and compare the performance of single idealized contacts with results of recent electrolytic analog tests to predict the conductance of multiple contacts.

966 citations

Journal ArticleDOI
TL;DR: In this article, the authors review and highlight over 40 years of research on solutions for steady-state and transient thermal constriction and spreading resistances, and thermomechanical models for contact, gap and joint resistances of joints formed by conforming rough surfaces, nonconforming smooth surfaces, and non-conforming rough surface.
Abstract: The Keynote Paper reviews and highlights over 40 years of research on solutions for steady-state and transient thermal constriction and spreading resistances, and thermomechanical models for contact, gap and joint resistances of joints formed by conforming rough surfaces, nonconforming smooth surfaces, and nonconforming rough surfaces. Microgap and macrogap thermal resistance and conductance models are reviewed, and important relations and correlation equations are presented. Contact microhardness, determined by Vickers indenters, are correlated and incorporated into the contact model for conforming rough surfaces. Microhardness parameters are correlated with Brinell hardness values. Elastoplastic contact models for joints formed by smooth sphere-smooth flat and conforming rough surfaces are presented. A simple thermomechanical model for microgaps occupied by oil, grease, grease filled with solid particles, and phase change materials such as paraffins is reviewed, and good agreement with recently published data is noted.

277 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an approach for incorporating forced convection through the specification of a fan curve into the optimization procedure, providing a link between optimized design parameters and the system operating point.
Abstract: The specification and design of heat sinks for electronic applications is not easily accomplished through the use of conventional thermal analysis tools because "optimized" geometric and boundary conditions are not known a priori. A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with heat transfer and fluid friction. All relevant design parameters for plate fin heat sinks, including geometric parameters, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature. In addition, a novel approach for incorporating forced convection through the specification of a fan curve is integrated into the optimization procedure, providing a link between optimized design parameters and the system operating point. Examples are presented that demonstrate the robust nature of the model for conditions typically found in electronic applications. The model is shown to converge to a unique solution that gives the optimized design conditions for the imposed problem constraints.

220 citations

Journal ArticleDOI
TL;DR: In this article, a compact approximate model is proposed that predicts the pressure drop for a wide variety of shapes, i.e., area, perimeter, and polar moment of inertia.
Abstract: The pressure drop of fully developed, laminar, incompressible flow in smooth mini- and microchannels of arbitrary cross-section is investigated. A compact approximate model is proposed that predicts the pressure drop for a wide variety of shapes. The model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The proposed model is compared with analytical and numerical solutions for several shapes

212 citations

Journal ArticleDOI
TL;DR: In this article, a general solution based on the separation of variables method for thermal spreading resistances of eccentric heat sources on a rectangular flux channel is presented for both isotropic and compound flux channels.
Abstract: A general solution, based on the separation of variables method for thermal spreading resistances of eccentric heat sources on a rectangular flux channel is presented. Solutions are obtained for both isotropic and compound flux channels. The general solution can also be used to model any number of discrete heat sources on a compound or isotropic flux channel using superposition. Several special cases involving single and multiple heat sources are presented. @DOI: 10.1115/1.1568125#

211 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Book
01 Jan 1981

2,237 citations

01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the finite volume technique to solve the governing equations of heat transfer and fluid flow due to buoyancy forces in a partially heated enclosure using nanofluids.

1,783 citations

Reference EntryDOI
15 Nov 2004
TL;DR: The mathematical structure of the contact formulation for finite element methods is derived on the basis of a continuum description of contact, and several algorithms related to spatial contact search and fulfillment of the inequality constraints at the contact interface are discussed.
Abstract: This paper describes modern techniques used to solve contact problems within Computational Mechanics. On the basis of a continuum description of contact, the mathematical structure of the contact formulation for finite element methods is derived. Emphasis is also placed on the constitutive behavior at the contact interface for normal and tangential (frictional) contact. Furthermore, different discretization schemes currently applied to solve engineering problems are formulated for small and finite strain problems. These include isoparametric interpolations, node-to-segment discretizations and also mortar and Nitsche techniques. Furthermore, several algorithms related to spatial contact search and fulfillment of the inequality constraints at the contact interface are discussed. Here, especially the penalty and Lagrange multiplier schemes are considered and also SQP- and linear-programming methods are reviewed. Keywords: contact mechanics; friction; penalty method; Lagrange multiplier method; contact algorithms; finite element method; finite deformations; discretization methods

1,761 citations