scispace - formally typeset
Search or ask a question
Author

M. Necati Özişik

Bio: M. Necati Özişik is an academic researcher from North Carolina State University. The author has contributed to research in topics: Thermal conduction & Heat transfer. The author has an hindex of 10, co-authored 27 publications receiving 3586 citations.

Papers
More filters
Book
01 Jan 2000
TL;DR: Inverse heat transfer: Fundamentals and Applications, Second Edition as mentioned in this paper includes techniques within the Bayesian framework of statistics for the solution of inverse problems and their applications for solving problems in convective, conductive, radiative, and multi-physics problems.
Abstract: This book introduces the fundamental concepts of inverse heat transfer solutions and their applications for solving problems in convective, conductive, radiative, and multi-physics problems. Inverse Heat Transfer: Fundamentals and Applications, Second Edition includes techniques within the Bayesian framework of statistics for the solution of inverse problems. By modernizing the classic work of the late Professor M. Necati Ozisik and adding new examples and problems, this new edition provides a powerful tool for instructors, researchers, and graduate students studying thermal-fluid systems and heat transfer. FEATURES Introduces the fundamental concepts of inverse heat transfer Presents in systematic fashion the basic steps of powerful inverse solution techniques Develops inverse techniques of parameter estimation, function estimation, and state estimation Applies these inverse techniques to the solution of practical inverse heat transfer problems Shows inverse techniques for conduction, convection, radiation, and multi-physics phenomena M. Necati Ozisik (1923–2008) retired in 1998 as Professor Emeritus of North Carolina State University’s Mechanical and Aerospace Engineering Department. Helcio R. B. Orlande is a Professor of Mechanical Engineering at the Federal University of Rio de Janeiro (UFRJ), where he was the Department Head from 2006 to 2007.

933 citations

Book
01 Jan 1968

846 citations

Book
01 Jan 1985
TL;DR: In this paper, heat transfer: a basic approach, heat transfer, a basic heat transfer approach, Heat transfer, basic approach for heat transfer in a basic way, Heat Transfer: a Basic approach for Heat transfer.
Abstract: Heat transfer: a basic approach , Heat transfer: a basic approach , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

842 citations

BookDOI
20 Jul 2017
TL;DR: Finite Difference Methods in Heat Transfer as mentioned in this paper presents a step-by-step delineation of finite difference methods for solving engineering problems governed by ordinary and partial differential equations, with emphasis on heat transfer applications.
Abstract: Finite Difference Methods in Heat Transfer presents a clear, step-by-step delineation of finite difference methods for solving engineering problems governed by ordinary and partial differential equations, with emphasis on heat transfer applications The finite difference techniques presented apply to the numerical solution of problems governed by similar differential equations encountered in many other fields Fundamental concepts are introduced in an easy-to-follow mannerRepresentative examples illustrate the application of a variety of powerful and widely used finite difference techniques The physical situations considered include the steady state and transient heat conduction, phase-change involving melting and solidification, steady and transient forced convection inside ducts, free convection over a flat plate, hyperbolic heat conduction, nonlinear diffusion, numerical grid generation techniques, and hybrid numerical-analytic solutions

636 citations


Cited by
More filters
Journal ArticleDOI
28 Sep 2012-Science
TL;DR: A set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior are reported, together with integrated sensors, actuators, power supply systems, and wireless control strategies.
Abstract: A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.

1,026 citations

Journal ArticleDOI
TL;DR: In this article, a rigorous pseudo-two-dimensional model to simulate the cycling performance of a lithium ion cell is compared with two simplified models and the advantage of using simplified models is illustrated and their limitations are discussed.

661 citations

Journal ArticleDOI
TL;DR: In this article, a bibliographical review on the convective heat transfer through microchannels is presented, highlighting the main results obtained on the friction factor, on the laminar-to-turbulent transition and on the Nusselt number in channels having a hydraulic diameter less than 1 mm.

647 citations

Journal ArticleDOI
TL;DR: In this article, the influence of enhancement techniques on the thermal response of the PCM in terms of phase change rate and amount of latent heat stored/retrieved has been addressed as a main aspect.
Abstract: Phase change material (PCM) based latent heat thermal storage (LHTS) systems offer a challenging option to be employed as an effective energy storage and retrieval device. The performance of LHTS systems is limited by the poor thermal conductivity of PCMs employed. Successful large-scale utilization of LHTS systems thus depends on the extent to which the performance can be improved. A great deal of work both experimental and theoretical on different performance enhancement techniques has been reported in the literature. This paper reviews the implementation of those techniques in different configurations of LHTS systems. The influence of enhancement techniques on the thermal response of the PCM in terms of phase change rate and amount of latent heat stored/retrieved has been addressed as a main aspect. Issues related to mathematical modeling of LHTS systems employing enhancement techniques are also discussed.

608 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored solutions to the He production-diffusion equation to characterize the response of apatite He ages to thermal histories involving partial He retention, and showed that He ages within the partial retention zone ultimately achieve a balance between He production and loss, yielding a steady state age.

551 citations