scispace - formally typeset
Search or ask a question
Author

M. O. Fashuyi

Bio: M. O. Fashuyi is an academic researcher from University of KwaZulu-Natal. The author has contributed to research in topics: Attenuation. The author has an hindex of 1, co-authored 1 publications receiving 18 citations.
Topics: Attenuation

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, different rain attenuation prediction models proposed by different authors on terrestrial paths are studied and compared on a monthly basis, as well with the measured upper and lower attenuation bounds for a 6.73-km line-of-sight link operating at 19.5 GHz in Durban.
Abstract: [1] The different rain attenuation prediction models proposed by different authors on terrestrial paths are studied in this paper. Subsequently, for paths not exceeding 22 km, the rain attenuation exceeded for 0.01% of the time for these four geographical locations is estimated for South Africa using the ITU-R Model, the Crane Global model, and the Moupfouma model, at different frequencies. Finally, the predicted attenuation values are compared on a monthly basis, as well with the measured upper and lower attenuation bounds for a 6.73-km line-of-sight link operating at 19.5 GHz in Durban.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a study of the raindrop size distribution along the eastern coast of South Africa (Durban) is presented, where the best kernel estimator, which results in the lowest integral square error (ISE), is used to measure the closeness of the estimated lognormal and gamma pdf of rain drop size to the measured raindrop distribution.
Abstract: A study of the raindrop size distribution along the eastern coast of South Africa (Durban) is presented. The Biweight kernel estimator based on distometer measurement is used to determine the best estimate of the measured raindrop size probability distribution function (pdf). The best kernel estimator, which results in the lowest integral square error (ISE), is used to measure the closeness of the estimated lognormal and gamma pdf of raindrop size to the measured raindrop size distribution. It is established that the optimised lognormal pdf slightly outperforms the optimised gamma pdf in terms of the mean ISE and the RMSE values, with mean ISE values of 0.026 for lognormal and 0.04 for gamma distributions, respectively, and corresponding mean RMSE values of 0.073 and 0.081, respectively. The method-of-moments gamma and lognormal distributions are observed to be worse estimators of the measured pdf than the two optimized distributions. The N(D) distributions using the optimised lognormal and gamma distributions for the region are compared with those for difierent tropical regions, namely, India, Singapore, Nigeria, Indonesia, and Brazil. While the Indian lognormal N(D) model gives the highest peak for low raindrop sizes for all rain rates, Durban's gamma and lognormal models exhibit the widest raindrop size spread over all rain rates ranging from 1{120mm/h. Finally, the speciflc attenuation due to rain using the Durban models are compared against the ITU-R models and actual measurements over a 19.5GHz LOS link; the results indicate a need for further work involving both distrometer and radio link measurements for rain rates exceeding 30mm/h in the eastern coast of South Africa.

34 citations

Journal ArticleDOI
TL;DR: In this article, the forward scattering amplitudes for the spherical raindrops are determined for all raindrop sizes at different frequencies by using the Mie scattering theory, and the real parts of the extinction cross sections are used to generate power law models at different frequency.
Abstract: [1] The forward scattering amplitudes for the spherical raindrops are determined for all raindrop sizes at different frequencies by using the Mie scattering theory. The real parts of the extinction cross sections are used to generate power law models at different frequencies. These are integrated over different established raindrop-size distribution models to formulate rain attenuation models. Using the developed rain attenuation models with 5 year rain rate statistics at R0.01 determined in previous work, the specific rain attenuation is computed. The experimental results obtained from the horizontally polarized signal level measurements recorded in Durban for different rain attenuation bounds are compared with the theoretical results. Finally, the best theoretical model is used to estimate the seasonal cumulative distribution of rain attenuation for Durban, South Africa.

33 citations

Journal ArticleDOI
TL;DR: The measured rain rate and rain attenuation distributions are analysed and benchmarked with several previous measurements and well-known prediction models and showed that the best agreement between the measured rainfall rate in Malaysia and the ITU-R PN is shown.
Abstract: The high frequencies of millimeter wave (mm-wave) bands have been recognized for the fifth generation (5G) and beyond wireless communication networks. However, the radio propagation channel at high frequencies can be largely influenced by rain attenuation, especially in tropical regions with high rainfall intensity. In this paper, we present the results of rainfall intensity and rain attenuation in tropical regions based on one-year measurement campaign. The measurements were conducted from September 2018 until September 2019 at 21.8 GHz (K-band) and 73.5 GHz (E-band) in Malaysia. The rainfall intensity was collected using three rain gauges installed along a 1.8 km link. The rain attenuation is computed from the difference between the measured minimum received signal level (RSL) during clear sky and rain conditions. The measured rain rate and rain attenuation distributions are then analysed and benchmarked with several previous measurements and well-known prediction models such as the ITU-R P. 530-17. The rainfall rate results showed that the best agreement between the measured rainfall rate in Malaysia and the ITU-R PN.837-1 prediction value for Zone P is up to 0.01% of time (99.99% of time agrees well and only disagrees for 0.01% of time). For the E-band, the maximum measured rain attenuation exceeding 0.03% of the year is around 40.1 and 20 dB for 1.8 and 0.3 km links, respectively, at the maximum rain rate of 108 mm/h. For the K-band, the maximum rain attenuation exceeding 0.01% of the year is around 31 dB for the 1.8 km link. Finally, the rain rates exceeding 108 and 180 mm/h at 73.5 and 21.8 GHz, respectively, along the 1.8 km path caused an outage on our measurement setup. The rain rate of 193 mm/h and above caused an outage for the 0.3 km E-band link. The experimental data as well as the presented data analysis can be utilized for efficient planning and deployments of mm-wave wireless communication systems in tropical regions.

28 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Mie scattering approach and the dielectric model of Liebe to determine the propagation coefficients and rain attenuation distribution for four locations in Botswana, southern Africa.
Abstract: [1] We use the Mie scattering approach and the dielectric model of Liebe to determine the propagation coefficients and rain attenuation distribution for four locations in Botswana, southern Africa, using R0.01 = 68.9 mm/h for Gaborone, R0.01 = 137.06 mm/h for Selebi-Phikwe, R0.01 = 86.87 mm/h for Francistown, and R0.01 = 64.4 mm/h for Kasane over the frequency range of 1–1000 GHz. The results show that the extinction coefficients depend more strongly on temperature at lower frequencies than at higher frequencies for lognormal distribution. The absorption coefficient is significant but decreases exponentially with rain temperature at lower microwave frequencies. The application of the proposed model with various distributions is corroborated using practical results for Durban in South Africa.

19 citations

Journal ArticleDOI
01 Sep 2020-Symmetry
TL;DR: A literature survey, of the last decade, on the issue of estimating rain with the use of earth-to-earth microwave signal attenuation focusing on measurements from backhaul cellular microwave links and experimental setups is presented.
Abstract: Many works have been conducted relevant to rainfall measurements, while the first relevant ones were based on the power loss estimation function from wireless links located back to the early 1940s. It is notable, though, that this innovative idea conduced to many theoretical models correlating the signal attenuation to the rainfall intensity. This type of parameter strongly contributes to the mechanism of frequency attenuation above 10 GHz. Consequently, in the last twenty years, there has been a significant boost to this research topic. Researchers all around the world have worked thoroughly on the issue of estimating rain with the use of earth-to-earth microwave signal attenuation. Nevertheless, the issue remains intriguing and challenging. This paper presents a literature survey, of the last decade, on this challenging issue focusing on measurements from backhaul cellular microwave links and experimental setups. Research challenges and future trends are also presented.

18 citations