scispace - formally typeset
Search or ask a question
Author

M. Paniccia

Bio: M. Paniccia is an academic researcher. The author has contributed to research in topics: Silicon photonics & Photonics. The author has an hindex of 1, co-authored 1 publications receiving 1419 citations.

Papers
More filters
Journal Article
TL;DR: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates as mentioned in this paper, however, any optical solution must be based on low-cost technologies if it is to be applied to the mass market.
Abstract: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates. Today, a silicon chip the size of a fingernail contains nearly 1 billion transistors and has the computing power that only a decade ago would take up an entire room of servers. As the relentless pursuit of Moore's law continues, and Internet-based communication continues to grow, the bandwidth demands needed to feed these devices will continue to increase and push the limits of copper-based signaling technologies. These signaling limitations will necessitate optical-based solutions. However, any optical solution must be based on low-cost technologies if it is to be applied to the mass market. Silicon photonics, mainly based on SOI technology, has recently attracted a great deal of attention. Recent advances and breakthroughs in silicon photonic device performance have shown that silicon can be considered a material onto which one can build optical devices. While significant efforts are needed to improve device performance and commercialize these technologies, progress is moving at a rapid rate. More research in the area of integration, both photonic and electronic, is needed. The future is looking bright. Silicon photonics could provide low-cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnects, as well as emerging areas such as optical sensing technology and biomedical applications. The ability to utilize existing CMOS infrastructure and manufacture these silicon photonic devices in the same facilities that today produce electronics could enable low-cost optical devices, and in the future, revolutionize optical communications

1,479 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,989 citations

Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations

Journal ArticleDOI
02 May 2012-ACS Nano
TL;DR: The latest progress in graphene photonics, plasmonics, and broadband optoelectronic devices is reviewed, with particular emphasis on the ability to integrate graphenePhotonics onto the silicon platform to afford broadband operation in light routing and amplification.
Abstract: Graphene has been hailed as a wonderful material in electronics, and recently, it is the rising star in photonics, as well. The wonderful optical properties of graphene afford multiple functions of signal emitting, transmitting, modulating, and detection to be realized in one material. In this paper, the latest progress in graphene photonics, plasmonics, and broadband optoelectronic devices is reviewed. Particular emphasis is placed on the ability to integrate graphene photonics onto the silicon platform to afford broadband operation in light routing and amplification, which involves components like polarizer, modulator, and photodetector. Other functions like saturable absorber and optical limiter are also reviewed.

1,778 citations

Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Abstract: Achieving optical gain and/or lasing in silicon has been one of the most challenging goals in silicon-based photonics because bulk silicon is an indirect bandgap semiconductor and therefore has a very low light emission efficiency. Recently, stimulated Raman scattering has been used to demonstrate light amplification and lasing in silicon. However, because of the nonlinear optical loss associated with two-photon absorption (TPA)-induced free carrier absorption (FCA), until now lasing has been limited to pulsed operation. Here we demonstrate a continuous-wave silicon Raman laser. Specifically, we show that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide. The laser cavity is formed by coating the facets of the silicon waveguide with multilayer dielectric films. We have demonstrated stable single mode laser output with side-mode suppression of over 55 dB and linewidth of less than 80 MHz. The lasing threshold depends on the p-i-n reverse bias voltage and the laser wavelength can be tuned by adjusting the wavelength of the pump laser. The demonstration of a continuous-wave silicon laser represents a significant milestone for silicon-based optoelectronic devices.

1,267 citations

Journal ArticleDOI
TL;DR: An electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding is reported.
Abstract: An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 degrees C. This approach allows for 100's of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors.

1,257 citations