scispace - formally typeset
Search or ask a question
Author

M. Perri

Bio: M. Perri is an academic researcher from INAF. The author has contributed to research in topics: Gamma-ray burst & Blazar. The author has an hindex of 79, co-authored 383 publications receiving 26625 citations. Previous affiliations of M. Perri include Agenzia Spaziale Italiana & Sapienza University of Rome.


Papers
More filters
Journal ArticleDOI
Fiona A. Harrison1, William W. Craig2, William W. Craig3, Finn Erland Christensen4, Charles J. Hailey5, William W. Zhang6, Steven E. Boggs3, Daniel Stern1, W. Rick Cook1, Karl Forster1, Paolo Giommi, Brian W. Grefenstette1, Yunjin Kim1, Takao Kitaguchi7, Jason E. Koglin5, Kristin K. Madsen1, Peter H. Mao1, Hiromasa Miyasaka1, Kaya Mori5, M. Perri8, Michael J. Pivovaroff2, Simonetta Puccetti8, Vikram Rana1, Niels Jørgen Stenfeldt Westergaard4, J. L. Willis1, Andreas Zoglauer3, Hongjun An9, Matteo Bachetti10, Matteo Bachetti11, Nicolas M. Barrière3, Eric C. Bellm1, Varun Bhalerao1, Varun Bhalerao12, Nicolai Brejnholt4, Felix Fuerst1, Carl Christian Liebe1, Craig B. Markwardt6, Melania Nynka5, Julia Vogel2, Dominic J. Walton1, Daniel R. Wik6, David M. Alexander13, L. R. Cominsky14, Ann Hornschemeier6, Allan Hornstrup4, Victoria M. Kaspi9, Greg Madejski, Giorgio Matt15, S. Molendi7, David M. Smith16, John A. Tomsick3, Marco Ajello3, David R. Ballantyne17, Mislav Baloković1, Didier Barret10, Didier Barret11, Franz E. Bauer18, Roger Blandford8, W. Niel Brandt19, Laura Brenneman20, James Chiang8, Deepto Chakrabarty21, Jérôme Chenevez4, Andrea Comastri7, Francois Dufour9, Martin Elvis20, Andrew C. Fabian22, Duncan Farrah23, Chris L. Fryer24, Eric V. Gotthelf5, Jonathan E. Grindlay20, D. J. Helfand25, Roman Krivonos3, David L. Meier1, Jon M. Miller26, Lorenzo Natalucci7, Patrick Ogle1, Eran O. Ofek27, Andrew Ptak6, Stephen P. Reynolds28, Jane R. Rigby6, Gianpiero Tagliaferri7, Stephen E. Thorsett29, Ezequiel Treister30, C. Megan Urry31 
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 to 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≾ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

1,966 citations

Journal ArticleDOI
TL;DR: A homogeneous X-rays analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23 is presented; this represents the largest sample ofX-ray GRB data published to date.
Abstract: We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2-3, we detail the methods which the Swift-XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift-XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4-6, we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.

1,613 citations

Journal ArticleDOI
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 - 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 13 June 2012, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 -- 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low-background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than one-hundred-fold improvement in sensitivity over the collimated or coded-mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity, spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives, and will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6degree inclination orbit, the Observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of ten years, we anticipate proposing a guest investigator program, to begin in Fall 2014.

1,548 citations

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Ivan Agudo4  +270 moreInstitutions (51)
Abstract: We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.

882 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a suite of programs that automatically generate Swift/XRT light curves of Gamma Ray Bursts (GRBs) from X-ray light curves obtained with the UK Swift Science Data Centre.
Abstract: Context. Swift data are revolutionising our understanding of Gamma Ray Bursts. Since bursts fade rapidly, it is desirable to create and disseminate accurate light curves rapidly. Aims. To provide the community with an online repository of X-ray light curves obtained with Swift. The light curves should be of the quality expected of published data, but automatically created and updated so as to be self-consistent and rapidly available. Methods. We have produced a suite of programs which automatically generates Swift/XRT light curves of GRBs. Effects of the damage to the CCD, automatic readout-mode switching and pile-up are appropriately handled, and the data are binned with variable bin durations, as necessary for a fading source. Results. The light curve repository website ⋆⋆ contains light curves, hardness ratios and deep images for every GRB which Swift’s XRT has observed. When new GRBs are detected, light curves are created and updated within minutes of the data arriving at the UK Swift Science Data Centre.

784 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
W. B. Atwood1, A. A. Abdo2, A. A. Abdo3, Markus Ackermann4  +289 moreInstitutions (37)
TL;DR: The Large Area Telescope (Fermi/LAT) as mentioned in this paper is the primary instrument on the Fermi Gamma-ray Space Telescope, which is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV.
Abstract: (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration with a total depth of 8.6 radiation lengths. The aspect ratio of the tracker (height/width) is 0.4 allowing a large field-of-view (2.4 sr). Data obtained with the LAT are intended to (i) permit rapid notification of high-energy gamma-ray bursts (GRBs) and transients and facilitate monitoring of variable sources, (ii) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (iii) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (iv) localize point sources to 0.3 - 2 arc minutes, (v) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (vi) measure the diffuse isotropic gamma-ray background up to TeV energies, and (vii) explore the discovery space for dark matter.

3,666 citations

Journal Article
TL;DR: Thaler and Sunstein this paper described a general explanation of and advocacy for libertarian paternalism, a term coined by the authors in earlier publications, as a general approach to how leaders, systems, organizations, and governments can nudge people to do the things the nudgers want and need done for the betterment of the nudgees, or of society.
Abstract: NUDGE: IMPROVING DECISIONS ABOUT HEALTH, WEALTH, AND HAPPINESS by Richard H. Thaler and Cass R. Sunstein Penguin Books, 2009, 312 pp, ISBN 978-0-14-311526-7This book is best described formally as a general explanation of and advocacy for libertarian paternalism, a term coined by the authors in earlier publications. Informally, it is about how leaders, systems, organizations, and governments can nudge people to do the things the nudgers want and need done for the betterment of the nudgees, or of society. It is paternalism in the sense that "it is legitimate for choice architects to try to influence people's behavior in order to make their lives longer, healthier, and better", (p. 5) It is libertarian in that "people should be free to do what they like - and to opt out of undesirable arrangements if they want to do so", (p. 5) The built-in possibility of opting out or making a different choice preserves freedom of choice even though people's behavior has been influenced by the nature of the presentation of the information or by the structure of the decisionmaking system. I had never heard of libertarian paternalism before reading this book, and I now find it fascinating.Written for a general audience, this book contains mostly social and behavioral science theory and models, but there is considerable discussion of structure and process that has roots in mathematical and quantitative modeling. One of the main applications of this social system is economic choice in investing, selecting and purchasing products and services, systems of taxes, banking (mortgages, borrowing, savings), and retirement systems. Other quantitative social choice systems discussed include environmental effects, health care plans, gambling, and organ donations. Softer issues that are also subject to a nudge-based approach are marriage, education, eating, drinking, smoking, influence, spread of information, and politics. There is something in this book for everyone.The basis for this libertarian paternalism concept is in the social theory called "science of choice", the study of the design and implementation of influence systems on various kinds of people. The terms Econs and Humans, are used to refer to people with either considerable or little rational decision-making talent, respectively. The various libertarian paternalism concepts and systems presented are tested and compared in light of these two types of people. Two foundational issues that this book has in common with another book, Network of Echoes: Imitation, Innovation and Invisible Leaders, that was also reviewed for this issue of the Journal are that 1 ) there are two modes of thinking (or components of the brain) - an automatic (intuitive) process and a reflective (rational) process and 2) the need for conformity and the desire for imitation are powerful forces in human behavior. …

3,435 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations