scispace - formally typeset
Search or ask a question
Author

M. R. Andrews

Other affiliations: Bell Labs, Alcatel-Lucent
Bio: M. R. Andrews is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Bose–Einstein condensate & Magnetic trap. The author has an hindex of 21, co-authored 37 publications receiving 11299 citations. Previous affiliations of M. R. Andrews include Bell Labs & Alcatel-Lucent.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, Bose-Einstein condensation of sodium atoms was observed in a novel trap that employed both magnetic and optical forces, which increased the phase-space density by 6 orders of magnitude within seven seconds.
Abstract: We have observed Bose-Einstein condensation of sodium atoms. The atoms were trapped in a novel trap that employed both magnetic and optical forces. Evaporative cooling increased the phase-space density by 6 orders of magnitude within seven seconds. Condensates contained up to 5\ifmmode\times\else\texttimes\fi{}${10}^{5}$ atoms at densities exceeding ${10}^{14}$ ${\mathrm{cm}}^{\ensuremath{-}3}$. The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of \ensuremath{\sim}2\ensuremath{\mu}K. The distribution consisted of an isotropic thermal distribution and an elliptical core attributed to the expansion of a dense condensate.

3,848 citations

Journal ArticleDOI
12 Mar 1998-Nature
TL;DR: In this paper, two such resonances have been observed in optically trapped Bose-Einstein condensates of sodium atoms by varying an external magnetic field, which gave rise to enhanced inelastic processes and a dispersive variation of the scattering length by a factor of over ten.
Abstract: It has long been predicted that the scattering of ultracold atoms can be altered significantly through a so-called ‘Feshbach resonance’. Two such resonances have now been observed in optically trapped Bose–Einstein condensates of sodium atoms by varying an external magnetic field. They gave rise to enhanced inelastic processes and a dispersive variation of the scattering length by a factor of over ten. These resonances open new possibilities for the study and manipulation of Bose–Einstein condensates.

1,640 citations

Journal ArticleDOI
31 Jan 1997-Science
TL;DR: It is demonstrated that Bose condensed atoms are “laser-like”; that is, they are coherent and show long-range correlations and have direct implications for the atom laser and the Josephson effect for atoms.
Abstract: Interference between two freely expanding Bose-Einstein condensates has been observed. Two condensates separated by ∼40 micrometers were created by evaporatively cooling sodium atoms in a double-well potential formed by magnetic and optical forces. High-contrast matter-wave interference fringes with a period of ∼15 micrometers were observed after switching off the potential and letting the condensates expand for 40 milliseconds and overlap. This demonstrates that Bose condensed atoms are “laser-like”; that is, they are coherent and show long-range correlations. These results have direct implications for the atom laser and the Josephson effect for atoms.

1,321 citations

Journal ArticleDOI
TL;DR: In this paper, Bose-Einstein condensates of sodium atoms have been confined in an optical dipole trap using a single focused infrared laser beam, achieving densities of up to $3.
Abstract: Bose-Einstein condensates of sodium atoms have been confined in an optical dipole trap using a single focused infrared laser beam. This eliminates the restrictions of magnetic traps for further studies of atom lasers and Bose-Einstein condensates. More than $5\ifmmode\times\else\texttimes\fi{}{10}^{6}$ condensed atoms were transferred into the optical trap. Densities of up to $3\ifmmode\times\else\texttimes\fi{}{10}^{15}{\mathrm{cm}}^{\ensuremath{-}3}$ of Bose condensed atoms were obtained, allowing for a measurement of the three-body loss rate constant for sodium condensates as ${K}_{3}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1.1(3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}30}{\mathrm{cm}}^{6}{\mathrm{s}}^{\ensuremath{-}1}$. At lower densities, the observed $1/e$ lifetime was longer than 10 s. Simultaneous confinement of Bose-Einstein condensates in several hyperfine states was demonstrated.

809 citations

Journal ArticleDOI
TL;DR: In this paper, an output coupler for Bose condensed atoms in a magnetic trap was demonstrated, where short pulses of rf radiation were used to create Bose condensates in a superposition of trapped and untrapped hyperfine states.
Abstract: We have demonstrated an output coupler for Bose condensed atoms in a magnetic trap. Short pulses of rf radiation were used to create Bose condensates in a superposition of trapped and untrapped hyperfine states. The fraction of out-coupled atoms was adjusted between 0% and 100% by varying the amplitude of the rf radiation. This configuration produces output pulses of coherent atoms and can be regarded as a pulsed ``atom laser.''

608 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
14 Jul 1995-Science
TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Abstract: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5 x 10 12 per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.

6,074 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the Bose-Einstein condensation of dilute gases in traps from a theoretical perspective and provided a framework to understand the main features of the condensation and role of interactions between particles.
Abstract: The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground-state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.

4,782 citations

Journal ArticleDOI
03 Jan 2002-Nature
TL;DR: This work observes a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential, and can induce reversible changes between the two ground states of the system.
Abstract: For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose-Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.

4,467 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations