scispace - formally typeset
Search or ask a question
Author

M. Saiful Islam

Bio: M. Saiful Islam is an academic researcher from Universiti Putra Malaysia. The author has contributed to research in topics: Thermosetting polymer & Natural fiber. The author has an hindex of 1, co-authored 1 publications receiving 659 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the most appropriate and widely used natural fiber reinforced polymer composites (NFPCs) and their applications is presented in this paper. But, the results of the review are limited due to the high water absorption, inferior fire resistance, and lower mechanical properties of NFPCs.
Abstract: Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

1,022 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors have reviewed the different sources of natural fibers, their properties, modification of natural fiber, the effect of treatments on natural fibers and their effective use as reinforcement for polymer composite materials.
Abstract: The increase in awareness of the damage caused by synthetic materials on the environment has led to the development of eco-friendly materials. The researchers have shown a lot of interest in developing such materials which can replace the synthetic materials. As a result, there is an increase in demand for commercial use of the natural fiber-based composites in recent years for various industrial sectors. Natural fibers are sustainable materials which are easily available in nature and have advantages like low-cost, lightweight, renewability, biodegradability and high specific properties. The sustainability of the natural fiber-based composite materials has led to upsurge its applications in various manufacturing sectors. In this paper, we have reviewed the different sources of natural fibers, their properties, modification of natural fibers, the effect of treatments on natural fibers, etc. We also summarize the major applications of natural fibers and their effective use as reinforcement for polymer composite materials.

441 citations

Journal ArticleDOI
TL;DR: In this article, a perspective review presents the advancement in the processing techniques, characterizations, future scope and methods to overcome the limitations in biofibers, biopolymers, biofilms, and bio composites.

405 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an up-do-date review on natural fiber and resin types and sources, modification and processing techniques, physical and mechanical behaviors, applications, life-cycle assessment, and other properties of green composites.
Abstract: There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. An increase in the use of natural materials in composites has led to a reduction in greenhouse gas emissions and carbon footprint of composites. In addition to the benefits obtained from green materials, there are some challenges in working with them, such as poor compatibility between the reinforcing natural fiber and matrix and the relatively high moisture absorption of natural fibers. Green composites can be a suitable alternative for petroleum-based materials. However, before this can be accomplished, there are a number of issues that need to be addressed, including poor interfacial adhesion between the matrix and natural fibers, moisture absorption, poor fire resistance, low impact strength, and low durability. Several researchers have studied the properties of natural fiber composites. These investigations have resulted in the development of several procedures for modifying natural fibers and resins. To address the increasing demand to use eco-friendly materials in different applications, an up-do-date review on natural fiber and resin types and sources, modification and processing techniques, physical and mechanical behaviors, applications, life-cycle assessment, and other properties of green composites is required to provide a better understanding of the behavior of green composites. This paper presents such a review based on 322 studies published since 1978.

393 citations

Journal ArticleDOI
01 Nov 2018
TL;DR: In this article, a comprehensive review about the properties of natural fibres used as composite materials reinforcement is presented, aiming to map where each type of fibre is positioned in several properties.
Abstract: There is significant work published in recent years about natural fibres polymeric composites. Most of the studies are about the characterization of natural fibres and their comparison with conventional composites regarding mechanical behaviour and application performance. There are dozens of types of natural fibres with different properties influencing their use, or not, in specific industrial applications. The natural origin of these materials causes, in general, a wide range of variations in properties depending mainly on the harvesting location and conditions, making it difficult to select the appropriate fibre for a specific application. In this paper, a comprehensive review about the properties of natural fibres used as composite materials reinforcement is presented, aiming to map where each type of fibre is positioned in several properties. Recent published work on emergent types of fibres is also reviewed. A bibliometric study regarding applications of natural fibres composites is presented. A prospective analysis about the future trends of natural fibres applications and the required developments to broaden their applications is also presented and discussed.

381 citations

Journal ArticleDOI
10 Jul 2020-Polymers
TL;DR: The most common defects on printed parts, in particular the void formation, surface roughness and poor bonding between fibre and matrix, are explored and an inclusive discussion on the effectiveness of chemical, laser, heat and ultrasound treatments to minimize these drawbacks is provided.
Abstract: Fused deposition modelling (FDM) is one of the fastest-growing additive manufacturing methods used in printing fibre-reinforced composites (FRC). The performances of the resulting printed parts are limited compared to those by other manufacturing methods due to their inherent defects. Hence, the effort to develop treatment methods to overcome these drawbacks has accelerated during the past few years. The main focus of this study is to review the impact of those defects on the mechanical performance of FRC and therefore to discuss the available treatment methods to eliminate or minimize them in order to enhance the functional properties of the printed parts. As FRC is a combination of polymer matrix material and continuous or short reinforcing fibres, this review will thoroughly discuss both thermoplastic polymers and FRCs printed via FDM technology, including the effect of printing parameters such as layer thickness, infill pattern, raster angle and fibre orientation. The most common defects on printed parts, in particular, the void formation, surface roughness and poor bonding between fibre and matrix, are explored. An inclusive discussion on the effectiveness of chemical, laser, heat and ultrasound treatments to minimize these drawbacks is provided by this review.

355 citations