scispace - formally typeset
Search or ask a question
Author

M. Sathyamoorthy

Bio: M. Sathyamoorthy is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Skew & Orthotropic material. The author has an hindex of 3, co-authored 3 publications receiving 44 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of transverse shear and rotatory inertia on the flexural vibration of elastic, isotropic skew plates were investigated and the influence of these effects on aspect ratios and skew angles of thin and moderately thick skew plates was investigated both at small and large amplitudes.

23 citations

Journal ArticleDOI
TL;DR: In this article, the large amplitude (non-linear) free flexural vibration of thin, elastic, orthotropic skew plates clamped along all four edges was analyzed using the Galerkin's method.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between the amplitude and period of orthotropic skew plates for various aspect ratios and skew angles under two in-plane edge conditions is investigated and the validity of the Berger approximation is investigated for the problem under consideration.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the recent developments in the analysis of laminated beams and plates with an emphasis on vibrations and wave propagations is presented in this paper, where a significant effort has been spent on developing appropriate continuum theories for modeling the composite materials.
Abstract: A summary of the recent developments in the analysis of laminated beams and plates with an emphasis on vibrations and wave propagations in presented. First, a review of the recent studies on the free-vibration analysis of symmetrically laminated plates is given. These studies have been conducted for various geometric shapes and edge conditions. Both analytical (closed-form, Galerkin, Rayleigh-Ritz) and numerical methods have been used. Because of the importance of unsymmetrically laminated structural components in many applications, a detailed review of the various developments in the analysis of unsymmetrical ly laminated beams and plates also is given. A survey of the nonlinear vibrations of the perfect and geometrically laminated plates is presented next. It is seen that due to the bending-stretching coupling, the nonlinear behavior of the unsymmetrically laminated perfect and imperfect plates, depending upon the boundary conditions, may be hardening or softening type. Similar behavior also is observed for imperfect isotropic and laminated plates. Lastly, the developments in studying the wave propagation in laminated materials are reviewed. It is seen that a significant effort has been spent on developing appropriate continuum theories for modeling the composite materials. Some recent studies on the linear and nonlinear transient response of laminated materials also are described.

288 citations

Journal ArticleDOI
Abstract: Here, the large amplitude free flexural vibration behavior of symmetrically laminated composite skew plates is investigated using the finite element method. The formulation includes the effects of shear deformation, in-plane and rotary inertia. The geometric non-linearity based on von Karman's assumptions is introduced. The nonlinear matrix amplitude equation obtained by employing Galerkin's method is solved by direct iteration technique. Time history for the nonlinear free vibration of composite skew plate is also obtained using Newmark's time integration technique to examine the accuracy of matrix amplitude equation. The variation of nonlinear frequency ratios with amplitudes is brought out considering different parameters such as skew angle, fiber orientation and boundary condition.

81 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlinear free vibration analysis of thin-to-moderately thick laminated composite skew plates is presented based on the first order shear deformation theory (FSDT) using differential quadrature method (DQM).

75 citations

Journal ArticleDOI
TL;DR: Using a differential quadrature (DQ) method, large amplitude free vibration analysis of laminated composite skew thin plates is presented in this paper, where the governing equations are based on the thin plate theory (TPT) and the geometrical nonlinearity is modeled using Green's strain in conjunction with von Karman assumptions.
Abstract: Using a differential quadrature (DQ) method, large amplitude free vibration analysis of laminated composite skew thin plates is presented The governing equations are based on the thin plate theory (TPT) and the geometrical nonlinearity is modeled using Green's strain in conjunction with von Karman assumptions To cause the impact due to nonlinear terms more significant, in-plane immovable simply supported, clamped and different combinations of them are considered The effects of different parameters on the convergence and accuracy of the method are studied The resulted solutions are compared to those from other numerical methods to show the accuracy of the method Some new results for laminated composite skew plates with different mixed boundary conditions are presented and are compared with those obtained using the first order shear deformation theory based DQ (FSDT-DQ) method Excellent agreements exist between the solutions of the two approaches but with much lower computational efforts of the present DQ methodology with respect to FSDT-DQ method

67 citations

Journal ArticleDOI
TL;DR: In this paper, the large amplitude free flexural vibration behaviors of thin laminated composite skew plates are investigated using finite element approach, which includes the effects of shear deformation, in-plane and rotary inertia.
Abstract: Here, the large amplitude free flexural vibration behaviors of thin laminated composite skew plates are investigated using finite element approach. The formulation includes the effects of shear deformation, in-plane and rotary inertia. The geometric non-linearity based on von Karman's assumptions is introduced. The non-linear governing equations obtained employing Lagrange's equations of motion are solved using the direct iteration technique. The variation of non-linear frequency ratios with amplitudes is brought out considering different parameters such as skew angle, number of layers, fiber orientation, boundary condition and aspect ratio. The influence of higher vibration modes on the non-linear dynamic behavior of laminated skew plates is also highlighted. The present study reveals the redistribution of vibrating mode shape at certain amplitude of vibration depending on geometric and lamination parameters of the plate. Also, the degree of hardening behavior increases with the skew angle and its rate of change depends on the level of amplitude of vibration.

58 citations