scispace - formally typeset
Search or ask a question
Author

M. Scheibelhut

Bio: M. Scheibelhut is an academic researcher from University of Mainz. The author has contributed to research in topics: Dark matter & Weakly interacting massive particles. The author has an hindex of 30, co-authored 47 publications receiving 5958 citations.

Papers
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi13, F. Toschi3, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini, M. Alfonsi3, F. D. Amaro4, M. Anthony1, F. Arneodo5, P. Barrow6, Laura Baudis6, Boris Bauermeister7, M. L. Benabderrahmane5, T. Berger8, P. A. Breur2, April S. Brown2, Ethan Brown8, S. Bruenner9, Giacomo Bruno, Ran Budnik10, L. Bütikofer11, J. Calvén7, João Cardoso4, M. Cervantes12, D. Cichon9, D. Coderre11, Auke-Pieter Colijn2, Jan Conrad7, Jean-Pierre Cussonneau13, M. P. Decowski2, P. de Perio1, P. Di Gangi14, A. Di Giovanni5, Sara Diglio13, G. Eurin9, J. Fei15, A. D. Ferella7, A. Fieguth16, W. Fulgione, A. Gallo Rosso, Michelle Galloway6, F. Gao1, M. Garbini14, Robert Gardner17, C. Geis3, Luke Goetzke1, L. Grandi17, Z. Greene1, C. Grignon3, C. Hasterok9, E. Hogenbirk2, J. Howlett1, R. Itay10, B. Kaminsky11, Shingo Kazama6, G. Kessler6, A. Kish6, H. Landsman10, R. F. Lang12, D. Lellouch10, L. Levinson10, Qing Lin1, Sebastian Lindemann9, Manfred Lindner9, F. Lombardi15, J. A. M. Lopes4, A. Manfredini10, I. Mariș5, T. Marrodán Undagoitia9, Julien Masbou13, F. V. Massoli14, D. Masson12, D. Mayani6, M. Messina1, K. Micheneau13, A. Molinario, K. Morâ7, M. Murra16, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack3, P. Pakarha6, Bart Pelssers7, R. Persiani13, F. Piastra6, J. Pienaar12, V. Pizzella9, M.-C. Piro8, Guillaume Plante1, N. Priel10, L. Rauch9, S. Reichard6, C. Reuter12, B. Riedel17, A. Rizzo1, S. Rosendahl16, N. Rupp9, R. Saldanha17, J.M.F. dos Santos4, Gabriella Sartorelli14, M. Scheibelhut3, S. Schindler3, J. Schreiner9, Marc Schumann11, L. Scotto Lavina19, M. Selvi14, P. Shagin18, E. Shockley17, Manuel Gameiro da Silva4, H. Simgen9, M. V. Sivers11, A. Stein20, S. Thapa17, Dominique Thers13, A. Tiseni2, Gian Carlo Trinchero, C. Tunnell17, M. Vargas16, N. Upole17, Hui Wang20, Zirui Wang, Yuehuan Wei6, Ch. Weinheimer16, J. Wulf6, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: The first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy, are reported and a profile likelihood analysis shows that the data are consistent with the background-only hypothesis.
Abstract: We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind The blinded search used 342 live days of data acquired between November 2016 and January 2017 Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (193±025)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector A profile likelihood analysis shows that the data are consistent with the background-only hypothesis We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c2, with a minimum of 77×10-47 cm2 for 35-GeV/c2 WIMPs at 90% CL

1,061 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, F. D. Amaro5, M. Anthony1, Lior Arazi6, F. Arneodo7, C. Balan5, P. Barrow8, Laura Baudis8, Boris Bauermeister4, Boris Bauermeister9, T. Berger10, P. A. Breur2, Amos Breskin6, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno12, Ran Budnik6, L. Bütikofer13, João Cardoso5, M. Cervantes14, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, H. Contreras1, Jean-Pierre Cussonneau15, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, E. Duchovni6, S. Fattori4, A. D. Ferella9, A. Fieguth12, D. Franco8, W. Fulgione, Michelle Galloway8, M. Garbini3, C. Geis4, Luke Goetzke1, Z. Greene1, C. Grignon4, E. K. U. Gross6, W. Hampel11, C. Hasterok11, R. Itay6, Florian Kaether11, B. Kaminsky13, G. Kessler8, A. Kish8, H. Landsman6, R. F. Lang14, D. Lellouch6, L. Levinson6, M. Le Calloch15, C. Levy10, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes5, A. Lyashenko16, S. Macmullin14, A. Manfredini6, T. Marrodán Undagoitia11, Julien Masbou15, F. V. Massoli3, D. Mayani8, A. J. Melgarejo Fernandez1, Y. Meng16, M. Messina1, K. Micheneau15, B. Miguez, A. Molinario, M. Murra12, J. Naganoma17, Uwe Oberlack4, S. E. A. Orrigo5, P. Pakarha8, Bart Pelssers9, R. Persiani15, F. Piastra8, J. Pienaar14, Guillaume Plante1, N. Priel6, L. Rauch11, S. Reichard14, C. Reuter14, A. Rizzo1, S. Rosendahl12, N. Rupp11, J.M.F. dos Santos5, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, Jochen Schreiner11, Marc Schumann13, L. Scotto Lavina15, M. Selvi3, P. Shagin17, Hardy Simgen11, A. Stein16, D. Thers15, A. Tiseni2, G. C. Trinchero, C. Tunnell2, M. von Sivers13, R. Wall17, Hui Wang16, M. Weber1, Yuehuan Wei8, Ch. Weinheimer12, J. Wulf8, Yanxi Zhang1 
TL;DR: In this article, the expected sensitivity of the Xenon1T experiment to the spin-independent WIMP-nucleon interaction cross section was investigated based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.
Abstract: The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10(−)(4) (kg·day·keV)(−)(1), mainly due to the decay of (222)Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)(−)(1) from radiogenic neutrons, (1.8 ± 0.3) · 10(−)(2) (t·y)(−)(1) from coherent scattering of neutrinos, and less than 0.01 (t·y)(−)(1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script L(eff), which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10(−)(47) cm(2) at m(χ) = 50 GeV/c(2).

580 citations

Journal ArticleDOI
Jelle Aalbers1, F. Agostini2, M. Alfonsi3, F. D. Amaro4, Claude Amsler5, Elena Aprile6, Lior Arazi7, F. Arneodo8, P. Barrow9, Laura Baudis9, Laura Baudis1, M. L. Benabderrahmane8, T. Berger10, B. Beskers3, Amos Breskin7, P. A. Breur1, April S. Brown1, Ethan Brown10, S. Bruenner11, Giacomo Bruno, Ran Budnik7, Lukas Bütikofer5, J. Calvén12, João Cardoso4, D. Cichon11, D. Coderre5, Auke-Pieter Colijn1, Jan Conrad12, Jean-Pierre Cussonneau13, M. P. Decowski1, Sara Diglio13, Guido Drexlin14, Ehud Duchovni7, E. Erdal7, G. Eurin11, A. D. Ferella12, A. Fieguth15, W. Fulgione, A. Gallo Rosso, P. Di Gangi2, A. Di Giovanni8, Michelle Galloway9, M. Garbini2, C. Geis3, F. Glueck14, L. Grandi16, Z. Greene6, C. Grignon3, C. Hasterok11, Volker Hannen15, E. Hogenbirk1, J. Howlett6, D. Hilk14, C. Hils3, A. James9, B. Kaminsky5, Shingo Kazama9, Benjamin Kilminster9, A. Kish9, Lawrence M. Krauss17, H. Landsman7, R. F. Lang18, Qing Lin6, F. L. Linde1, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes4, Marrodan T. Undagoitia11, Julien Masbou13, F. V. Massoli2, D. Mayani9, M. Messina6, K. Micheneau13, A. Molinario, K. Morå12, E. Morteau13, M. Murra15, J. Naganoma19, Jayden L. Newstead17, Kaixuan Ni20, Uwe Oberlack3, P. Pakarha9, Bart Pelssers12, P. de Perio6, R. Persiani13, F. Piastra9, M.-C. Piro10, G. Plante6, L. Rauch11, S. Reichard18, A. Rizzo6, N. Rupp11, J.M.F. dos Santos4, G. Sartorelli2, M. Scheibelhut3, S. Schindler3, Marc Schumann5, Marc Schumann21, Jochen Schreiner11, L. Scotto Lavina13, M. Selvi2, P. Shagin19, Miguel Silva4, Hardy Simgen11, P. Sissol3, M. von Sivers5, D. Thers13, J. Thurn22, A. Tiseni1, Roberto Trotta23, C. Tunnell1, Kathrin Valerius14, M. Vargas15, Hongwei Wang24, Yuehuan Wei9, Ch. Weinheimer15, T. Wester22, J. Wulf9, Yanxi Zhang6, T. Zhu9, Kai Zuber22 
TL;DR: DARk matter WImp search with liquid xenoN (DARWIN) as mentioned in this paper is an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core.
Abstract: DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary g ...

553 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers, F. Agostini2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi, E. Angelino2, E. Angelino7, J. R. Angevaare8, F. Arneodo9, D. Barge, Laura Baudis10, Boris Bauermeister, Lorenzo Bellagamba2, M. L. Benabderrahmane9, T. Berger11, April S. Brown10, Ethan Brown11, S. Bruenner, Giacomo Bruno9, Ran Budnik12, C. Capelli10, João Cardoso6, D. Cichon13, B. Cimmino2, M. Clark14, D. Coderre15, Auke-Pieter Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, A. Depoian14, P. Di Gangi2, A. Di Giovanni9, R. Di Stefano2, Sara Diglio, A. Elykov15, G. Eurin13, A. D. Ferella16, W. Fulgione7, P. Gaemers, R. Gaior, Michelle Galloway10, F. Gao1, L. Grandi, C. Hasterok2, C. Hils4, Katsuki Hiraide17, L. Hoetzsch13, J. Howlett1, M. Iacovacci2, Yoshitaka Itow18, F. Joerg13, N. Kato17, Shingo Kazama18, Masanori Kobayashi1, G. Koltman12, A. Kopec14, H. Landsman12, R. F. Lang14, L. Levinson12, Qing Lin1, Sebastian Lindemann15, Manfred Lindner13, F. Lombardi6, J. Long, J. A. M. Lopes6, E. López Fune, C. Macolino, Joern Mahlstedt, A. Mancuso2, Laura Manenti9, A. Manfredini10, F. Marignetti2, T. Marrodán Undagoitia13, K. Martens17, Julien Masbou, D. Masson15, S. Mastroianni2, M. Messina, Kentaro Miuchi19, K. Mizukoshi19, A. Molinario, K. Morå1, S. Moriyama17, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni20, Uwe Oberlack4, K. Odgers11, J. Palacio13, Bart Pelssers, R. Peres10, J. Pienaar21, V. Pizzella13, Guillaume Plante1, J. Qin14, H. Qiu12, D. Ramírez García15, S. Reichard10, A. Rocchetti15, N. Rupp13, J.M.F. dos Santos6, Gabriella Sartorelli2, N. Šarčević15, M. Scheibelhut4, J. Schreiner13, D. Schulte5, Marc Schumann15, L. Scotto Lavina, M. Selvi2, F. Semeria2, P. Shagin22, E. Shockley21, Manuel Gameiro da Silva6, H. Simgen13, A. Takeda18, C. Therreau, Dominique Thers, F. Toschi15, Gian Carlo Trinchero2, C. Tunnell22, M. Vargas5, G. Volta10, Hongwei Wang23, Yuehuan Wei20, Ch. Weinheimer5, M. Weiss12, D. Wenz4, C. Wittweg5, Z. Xu1, Masaki Yamashita18, J. Ye20, Guido Zavattini2, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis, Xavier Mougeot 
TL;DR: In this article, the XENON1T data was used for searches for new physics with low-energy electronic recoil data recorded with the Xenon1T detector, which enabled one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter.
Abstract: We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4σ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by gae<3.8×10-12, gaeganeff<4.8×10-18, and gaegaγ<7.7×10-22 GeV-1, and excludes either gae=0 or gaegaγ=gaeganeff=0. The neutrino magnetic moment signal is similarly favored over background at 3.2σ, and a confidence interval of μν∈(1.4,2.9)×10-11 μB (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by β decays of tritium at 3.2σ significance with a corresponding tritium concentration in xenon of (6.2±2.0)×10-25 mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses are decreased to 2.0σ and 0.9σ, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3±0.2) keV (68% C.L.) with a 3.0σ global (4.0σ local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c2. We also consider the possibility that Ar37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar37 concentration can be tightly constrained and is found to be negligible.

452 citations


Cited by
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi13, F. Toschi3, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini, M. Alfonsi3, F. D. Amaro4, M. Anthony1, F. Arneodo5, P. Barrow6, Laura Baudis6, Boris Bauermeister7, M. L. Benabderrahmane5, T. Berger8, P. A. Breur2, April S. Brown2, Ethan Brown8, S. Bruenner9, Giacomo Bruno, Ran Budnik10, L. Bütikofer11, J. Calvén7, João Cardoso4, M. Cervantes12, D. Cichon9, D. Coderre11, Auke-Pieter Colijn2, Jan Conrad7, Jean-Pierre Cussonneau13, M. P. Decowski2, P. de Perio1, P. Di Gangi14, A. Di Giovanni5, Sara Diglio13, G. Eurin9, J. Fei15, A. D. Ferella7, A. Fieguth16, W. Fulgione, A. Gallo Rosso, Michelle Galloway6, F. Gao1, M. Garbini14, Robert Gardner17, C. Geis3, Luke Goetzke1, L. Grandi17, Z. Greene1, C. Grignon3, C. Hasterok9, E. Hogenbirk2, J. Howlett1, R. Itay10, B. Kaminsky11, Shingo Kazama6, G. Kessler6, A. Kish6, H. Landsman10, R. F. Lang12, D. Lellouch10, L. Levinson10, Qing Lin1, Sebastian Lindemann9, Manfred Lindner9, F. Lombardi15, J. A. M. Lopes4, A. Manfredini10, I. Mariș5, T. Marrodán Undagoitia9, Julien Masbou13, F. V. Massoli14, D. Masson12, D. Mayani6, M. Messina1, K. Micheneau13, A. Molinario, K. Morâ7, M. Murra16, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack3, P. Pakarha6, Bart Pelssers7, R. Persiani13, F. Piastra6, J. Pienaar12, V. Pizzella9, M.-C. Piro8, Guillaume Plante1, N. Priel10, L. Rauch9, S. Reichard6, C. Reuter12, B. Riedel17, A. Rizzo1, S. Rosendahl16, N. Rupp9, R. Saldanha17, J.M.F. dos Santos4, Gabriella Sartorelli14, M. Scheibelhut3, S. Schindler3, J. Schreiner9, Marc Schumann11, L. Scotto Lavina19, M. Selvi14, P. Shagin18, E. Shockley17, Manuel Gameiro da Silva4, H. Simgen9, M. V. Sivers11, A. Stein20, S. Thapa17, Dominique Thers13, A. Tiseni2, Gian Carlo Trinchero, C. Tunnell17, M. Vargas16, N. Upole17, Hui Wang20, Zirui Wang, Yuehuan Wei6, Ch. Weinheimer16, J. Wulf6, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: The first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy, are reported and a profile likelihood analysis shows that the data are consistent with the background-only hypothesis.
Abstract: We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind The blinded search used 342 live days of data acquired between November 2016 and January 2017 Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (193±025)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector A profile likelihood analysis shows that the data are consistent with the background-only hypothesis We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c2, with a minimum of 77×10-47 cm2 for 35-GeV/c2 WIMPs at 90% CL

1,061 citations

Journal ArticleDOI
TL;DR: A review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities, and Collider and Indirect Detection will not be neglected when they represent a complementary probe.
Abstract: Weakly Interacting Massive Particles (WIMPs) are among the best-motivated dark matter candidates. No conclusive signal, despite an extensive search program that combines, often in a complementary way, direct, indirect, and collider probes, has been detected so far. This situation might change in near future due to the advent of one/multi-TON Direct Detection experiments. We thus, find it timely to provide a review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities. Collider and Indirect Detection, nevertheless, will not be neglected when they represent a complementary probe.

772 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, F. D. Amaro5, M. Anthony1, Lior Arazi6, F. Arneodo7, C. Balan5, P. Barrow8, Laura Baudis8, Boris Bauermeister9, Boris Bauermeister4, T. Berger10, P. A. Breur2, Amos Breskin6, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno12, Ran Budnik6, L. Bütikofer13, João Cardoso5, M. Cervantes14, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, H. Contreras1, Jean-Pierre Cussonneau15, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, E. Duchovni6, S. Fattori4, A. D. Ferella9, A. Fieguth12, D. Franco8, W. Fulgione, Michelle Galloway8, M. Garbini3, C. Geis4, Luke Goetzke1, Z. Greene1, C. Grignon4, E. K. U. Gross6, W. Hampel11, C. Hasterok11, R. Itay6, Florian Kaether11, B. Kaminsky13, G. Kessler8, A. Kish8, H. Landsman6, R. F. Lang14, D. Lellouch6, L. Levinson6, M. Le Calloch15, C. Levy10, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes5, A. Lyashenko16, S. Macmullin14, A. Manfredini6, T. Marrodán Undagoitia11, Julien Masbou15, F. V. Massoli3, D. Mayani8, A. J. Melgarejo Fernandez1, Y. Meng16, M. Messina1, K. Micheneau15, B. Miguez, A. Molinario, M. Murra12, J. Naganoma17, Uwe Oberlack4, S. E. A. Orrigo5, P. Pakarha8, Bart Pelssers9, R. Persiani15, F. Piastra8, J. Pienaar14, Guillaume Plante1, N. Priel6, L. Rauch11, S. Reichard14, C. Reuter14, A. Rizzo1, S. Rosendahl12, N. Rupp11, J.M.F. dos Santos5, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, Jochen Schreiner11, Marc Schumann13, L. Scotto Lavina15, M. Selvi3, P. Shagin17, Hardy Simgen11, A. Stein16, D. Thers15, A. Tiseni2, G. C. Trinchero, C. Tunnell2, M. von Sivers13, R. Wall17, Hui Wang16, M. Weber1, Yuehuan Wei8, Ch. Weinheimer12, J. Wulf8, Yanxi Zhang1 
TL;DR: In this article, the expected sensitivity of the Xenon1T experiment to the spin-independent WIMP-nucleon interaction cross section was investigated based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.
Abstract: The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10(−)(4) (kg·day·keV)(−)(1), mainly due to the decay of (222)Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)(−)(1) from radiogenic neutrons, (1.8 ± 0.3) · 10(−)(2) (t·y)(−)(1) from coherent scattering of neutrinos, and less than 0.01 (t·y)(−)(1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script L(eff), which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10(−)(47) cm(2) at m(χ) = 50 GeV/c(2).

580 citations