scispace - formally typeset
Search or ask a question
Author

M. Sedighy

Bio: M. Sedighy is an academic researcher from Hatch Ltd. The author has contributed to research in topics: Signal processing & AC power. The author has an hindex of 1, co-authored 1 publications receiving 107 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Simulation results indicate that the signal processing unit can provide the required signals for APF to perform filtering/compensation within the transient period of 2 to 3 cycles.
Abstract: A signal processing system for extraction of harmonic and reactive current components is introduced and its performance is evaluated. The extraction system is adopted as part of the control system of a single-phase active power filter (APF) to provide the required signals for harmonic filtering and reactive power compensation. Performance of the overall system is evaluated based on digital time-domain simulation studies. The APF control system including the signal processing algorithms are implemented in Matlab/Simulink Fixed-Point Blockset to accommodate bit-length limitation which is a crucial factor in digital implementation. The power system including the APF, load and the supply system are simulated with the PSCAD/EMTDC software to which the Matlab-based control model is interfaced. The simulation results indicate that the signal processing unit can provide the required signals for APF to perform filtering/compensation within the transient period of 2 to 3 cycles.

112 citations


Cited by
More filters
Journal ArticleDOI
04 Jul 2010
TL;DR: In this article, a single-phase inverter for distributed generation systems requiring power quality features, such as harmonic and reactive power compensation for grid-connected operation, is proposed, where the inverter controls the active power flow from the renewable energy source to the grid and also performs the nonlinear load current harmonic compensation keeping the grid current almost sinusoidal.
Abstract: Power electronic converters are commonly used for interfacing distributed generation systems to the electrical power network. This paper deals with a single-phase inverter for distributed generation systems requiring power quality features, such as harmonic and reactive power compensation for grid-connected operation. The idea is to integrate the DG unit functions with shunt active power filter capabilities. With the proposed approach, the inverter controls the active power flow from the renewable energy source to the grid and also performs the non-linear load current harmonic compensation keeping the grid current almost sinusoidal. The control scheme employs a current reference generator based on Sinusoidal Signal Integrator (SSI) and Instantaneous Reactive Power (IRP) theory together with a repetitive current controller. Experimental results obtained on a 4 kVA inverter prototype demonstrate the feasibility of the proposed solution.

301 citations

Journal ArticleDOI
TL;DR: An active power compensator (APC) based on single-phase back-to-back power converter is proposed in this paper to solve problems of power quality of electric railway power supply system.
Abstract: An active power compensator (APC) based on single-phase back-to-back power converter is proposed in this paper to solve problems of power quality of electric railway power supply system. This system adopts a single-phase feeding connection, which is called cophase power supply scheme. In this scheme, APC connects the balance transformer between feeding phase for power supply and another phase for compensation. It has some characteristics, such as active power balancing, reactive power compensating, and harmonics filtering. In order to achieve these characteristics, the control scheme requires seven combination models. In this paper, a multifunctional control algorithm is proposed to realize every conceivable model. A cophase system with APC based on field programmable gate array (FPGA) and YNvd balance transformer is also designed and evaluated. The experimental results obtained from this prototype illustrate that the compensating ability is extremely high in steady-state and dynamic responses, and the power quality of a substation with distorted loads can be improved integrally.

214 citations

Journal ArticleDOI
TL;DR: In this article, several methods of power system harmonics estimation are critically reviewed and classified based on the type of analysis tool and applications and the key issues and challenges in harmonics estimations are highlighted.

185 citations

Journal ArticleDOI
TL;DR: In this article, a new adaptive notch filtering (ANF) approach is introduced as a powerful tool for synchronization of converter-interfaced distributed generation systems that can potentially stimulate much interest in the field and provide improvement solutions for both grid-connected and stand-alone (islanding operation) modes of micro-grids.
Abstract: This letter introduces a new adaptive notch filtering (ANF) approach as a powerful tool for synchronization of converter-interfaced distributed generation systems that can potentially stimulate much interest in the field and provide improvement solutions for both grid-connected and stand-alone (islanding operation) modes of micro-grids. The proposed technique is simple and offers a high degree of immunity and insensitivity to power system disturbances, harmonics and other types of pollution that exist in the grid signal. A modified structure of the ANF-based synchronization technique is capable of decomposing three-phase quantities into symmetrical components, extracting harmonics, tracking the frequency variations, and providing means for voltage regulation and reactive power control. A prominent advantage of the proposed scheme is that it does not require a phase-locked loop for the synchronization. In addition, this very simple and very powerful power signal processor will simplify the control issues currently challenging the integration of distributed energy technologies onto the electricity grid. All converter-interfaced equipment, such as flexible AC transmission systems, custom power controllers, and active power filters, will benefit from this technique. Theoretical analysis is presented and the performance of the method is evaluated through simulation.

180 citations

Journal ArticleDOI
TL;DR: In this paper, a variety of control methods that emphasise either harmonic-line flows or local-voltage distortion are examined, and a compromise method based on resistance emulation is shown to be effective.
Abstract: The introduction of distributed generation, DG, into low-voltage (LV) networks opens up the possibility of supplying ancillary services to aid network management and to maintain power quality. DG itself can cause voltage magnitude difficulties when injecting real power into networks with high R/X ratios, but control of reactive power injection can help overcome this. Continuous control and support only at the voltage limit conditions (to avoid unnecessary reactive power flows in normal conditions) are explored. Relatively high-impedance LV networks are prone to harmonic distortion from nonlinear loads. A variety of control methods that emphasise either harmonic-line flows or local-voltage distortion are examined, and a compromise method based on resistance emulation is shown to be effective. Experimental results from a single-phase laboratory network and 2 kVA inverter are used to illustrate how these additional control functions can be integrated into the existing control scheme for real-power management. Decomposition of observed voltages and currents into harmonic terms that are phasesynchronised to the grid voltage is a challenge in real-time systems. Kalman observers are used to achieve this with an additional advantage of avoiding explicit phase-locking while producing quadrature components useful in instantaneous calculation of reactive power and in providing feed-forward compensation terms

131 citations