scispace - formally typeset
Search or ask a question

M. Shamim Hossain

Other affiliations: University of Ottawa
Bio: M. Shamim Hossain is an academic researcher from King Saud University. The author has contributed to research in topics: Cloud computing & Computer science. The author has an hindex of 50, co-authored 300 publications receiving 8610 citations. Previous affiliations of M. Shamim Hossain include University of Ottawa.

More filters
Journal ArticleDOI
TL;DR: This paper presents a HealthIIoT-enabled monitoring framework, where ECG and other healthcare data are collected by mobile devices and sensors and securely sent to the cloud for seamless access by healthcare professionals.

625 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive study of representative works on Sensor-Cloud infrastructure, which will provide general readers an overview of the Sensor- Cloud platform including its definition, architecture, and applications.
Abstract: Nowadays, wireless sensor network (WSN) applications have been used in several important areas, such as healthcare, military, critical infrastructure monitoring, environment monitoring, and manufacturing. However, due to the limitations of WSNs in terms of memory, energy, computation, communication, and scalability, efficient management of the large number of WSNs data in these areas is an important issue to deal with. There is a need for a powerful and scalable high-performance computing and massive storage infrastructure for real-time processing and storing of the WSN data as well as analysis (online and offline) of the processed information under context using inherently complex models to extract events of interest. In this scenario, cloud computing is becoming a promising technology to provide a flexible stack of massive computing, storage, and software services in a scalable and virtualized manner at low cost. Therefore, in recent years, Sensor-Cloud infrastructure is becoming popular that can provide an open, flexible, and reconfigurable platform for several monitoring and controlling applications. In this paper, we present a comprehensive study of representative works on Sensor-Cloud infrastructure, which will provide general readers an overview of the Sensor-Cloud platform including its definition, architecture, and applications. The research challenges, existing solutions, and approaches as well as future research directions are also discussed in this paper.

396 citations

Journal ArticleDOI
TL;DR: Experimental results confirm the effectiveness of the proposed system involving the CNNs and the ELMs, which is evaluated using two audio–visual emotional databases, one of which is Big Data.

301 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the novel MCNN and CCNN fusion methods outperforms all the state-of-the-art machine learning and deep learning techniques for EEG classification.

283 citations

Journal ArticleDOI
TL;DR: This paper proposes a cloud-supported cyber–physical localization system for patient monitoring using smartphones to acquire voice and electroencephalogram signals in a scalable, real-time, and efficient manner and uses Gaussian mixture modeling for localization to outperform other similar methods in terms of error estimation.
Abstract: The potential of cloud-supported cyber–physical systems (CCPSs) has drawn a great deal of interest from academia and industry. CCPSs facilitate the seamless integration of devices in the physical world (e.g., sensors, cameras, microphones, speakers, and GPS devices) with cyberspace. This enables a range of emerging applications or systems such as patient or health monitoring, which require patient locations to be tracked. These systems integrate a large number of physical devices such as sensors with localization technologies (e.g., GPS and wireless local area networks) to generate, sense, analyze, and share huge quantities of medical and user-location data for complex processing. However, there are a number of challenges regarding these systems in terms of the positioning of patients, ubiquitous access, large-scale computation, and communication. Hence, there is a need for an infrastructure or system that can provide scalability and ubiquity in terms of huge real-time data processing and communications in the cyber or cloud space. To this end, this paper proposes a cloud-supported cyber–physical localization system for patient monitoring using smartphones to acquire voice and electroencephalogram signals in a scalable, real-time, and efficient manner. The proposed approach uses Gaussian mixture modeling for localization and is shown to outperform other similar methods in terms of error estimation.

237 citations

Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2012

3,692 citations

01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations