scispace - formally typeset
Search or ask a question
Author

M. Sharon Stack

Other affiliations: Northwestern University, University of Chicago, Duke University  ...read more
Bio: M. Sharon Stack is an academic researcher from University of Missouri. The author has contributed to research in topics: Ovarian cancer & Matrix metalloproteinase. The author has an hindex of 43, co-authored 74 publications receiving 6790 citations. Previous affiliations of M. Sharon Stack include Northwestern University & University of Chicago.


Papers
More filters
Journal ArticleDOI
TL;DR: Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference, and invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macrop atterning.
Abstract: Invasive cell migration through tissue barriers requires pericellular remodelling of extracellular matrix (ECM) executed by cell-surface proteases, particularly membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Using time-resolved multimodal microscopy, we show how invasive HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen remodelling by segregating the anterior force-generating leading edge containing beta1 integrin, MT1-MMP and F-actin from a posterior proteolytic zone executing fibre breakdown. During forward movement, sterically impeding fibres are selectively realigned into microtracks of single-cell calibre. Microtracks become expanded by multiple following cells by means of the large-scale degradation of lateral ECM interfaces, ultimately prompting transition towards collective invasion similar to that in vivo. Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference. Thus, invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macropatterning and, consequently, individual and collective cell migration.

987 citations

Journal ArticleDOI
TL;DR: Binding of angiostatin to the alpha/beta-subunits of ATP synthase on the cell surface may mediate its antiangiogenic effects and the down-regulation of endothelial cell proliferation and migration.
Abstract: Angiostatin, a proteolytic fragment of plasminogen, is a potent antagonist of angiogenesis and an inhibitor of endothelial cell migration and proliferation. To determine whether the mechanism by which angiostatin inhibits endothelial cell migration and/or proliferation involves binding to cell surface plasminogen receptors, we isolated the binding proteins for plasminogen and angiostatin from human umbilical vein endothelial cells. Binding studies demonstrated that plasminogen and angiostatin bound in a concentration-dependent, saturable manner. Plasminogen binding was unaffected by a 100-fold molar excess of angiostatin, indicating the presence of a distinct angiostatin binding site. This finding was confirmed by ligand blot analysis of isolated human umbilical vein endothelial cell plasma membrane fractions, which demonstrated that plasminogen bound to a 44-kDa protein, whereas angiostatin bound to a 55-kDa species. Amino-terminal sequencing coupled with peptide mass fingerprinting and immunologic analyses identified the plasminogen binding protein as annexin II and the angiostatin binding protein as the α/β-subunits of ATP synthase. The presence of this protein on the cell surface was confirmed by flow cytometry and immunofluorescence analysis. Angiostatin also bound to the recombinant α-subunit of human ATP synthase, and this binding was not inhibited by a 2,500-fold molar excess of plasminogen. Angiostatin’s antiproliferative effect on endothelial cells was inhibited by as much as 90% in the presence of anti-α-subunit ATP synthase antibody. Binding of angiostatin to the α/β-subunits of ATP synthase on the cell surface may mediate its antiangiogenic effects and the down-regulation of endothelial cell proliferation and migration.

519 citations

Journal ArticleDOI
TL;DR: Evidence is provided that laminin-5 is a multifunctional protein that can act under certain circumstances as a motility and at other times as an adhesive factor.
Abstract: The laminin-5 component of the extracellular matrices of certain cultured cells such as the rat epithelial cell line 804G and the human breast epithelial cell MCF-10A is capable of nucleating assembly of cell– matrix adhesive devices called hemidesmosomes when other cells are plated upon them. These matrices also impede cell motility. In contrast, cells plated onto the laminin-5–rich matrices of pp126 epithelial cells fail to assemble hemidesmosomes and are motile. To understand these contradictory phenomena, we have compared the forms of heterotrimeric laminin-5 secreted by 804G and MCF-10A cells with those secreted by pp126 cells, using a panel of laminin-5 subunit-specific antibodies. The α3 subunit of laminin-5 secreted by pp126 cells migrates at 190 kD, whereas that secreted by 804G and MCF-10A cells migrates at 160 kD. The pp126 cell 190-kD α3 chain of laminin-5 can be specifically proteolyzed by plasmin to a 160-kD species at enzyme concentrations that do not apparently effect the laminin-5 β and γ chains. After plasmin treatment, pp126 cell laminin-5 not only impedes cell motility but also becomes competent to nucleate assembly of hemidesmosomes. The possibility that plasmin may play an important role in processing laminin-5 subunits is supported by immunofluorescence analyses that demonstrate colocalization of laminin-5 and plasminogen in the extracellular matrix of MCF-10A and pp126 cells. Whereas tissue-type plasminogen activator (tPA), which converts plasminogen to plasmin, codistributes with laminin-5 in MCF-10A matrix, tPA is not present in pp126 extracellular matrix. Treatment of pp126 laminin-5–rich extracellular matrix with exogenous tPA results in proteolysis of the laminin-5 α3 chain from 190 to 160 kD. In addition, plasminogen and tPA bind laminin-5 in vitro. In summary, we provide evidence that laminin-5 is a multifunctional protein that can act under certain circumstances as a motility and at other times as an adhesive factor. In cells in culture, this functional conversion appears dependent upon and is regulated by tPA and plasminogen.

323 citations

Journal ArticleDOI
TL;DR: The high-throughput and quantitative nature of isotope-coded affinity tag labeling combined with tandem MS sequencing is a previously undescribed degradomic screen for protease substrate discovery that should be generally adaptable to other classes of protease for exploring proteolytic function in complex and dynamic biological contexts.
Abstract: By proteolytic modification of low abundant signaling proteins and membrane receptors, proteases exert potent posttranslational control over cell behavior at the postsecretion level. Hence, substrate discovery is indispensable for understanding the biological role of proteases in vivo. Indeed, matrix metalloproteinases (MMPs), long associated with extracellular matrix degradation, are increasingly recognized as important processing enzymes of bioactive molecules. MS is now the primary proteomic technique for detecting, identifying, and quantitating proteins in cells or tissues. Here we used isotopecoded affinity tag labeling and multidimensional liquid chromatography inline with tandem MS to identify MDA-MB-231 breast carcinoma cell proteins shed from the cell surface or the pericellular matrix and extracellular proteins that were degraded or processed after transfection with human membrane type 1-MMP (MT1-MMP). Potential substrates were identified as those having altered protein levels compared with the E240A inactive MT1-MMP mutant or vector transfectants. New substrates were biochemically confirmed by matrix-assisted laser desorption ionization–time-of-flight MS and Edman sequencing of cleavage fragments after incubation with recombinant soluble MT1-MMP in vitro. We report many previously uncharacterized substrates of MT1-MMP, including the neutrophil chemokine IL-8, secretory leukocyte protease inhibitor, pro-tumor necrosis factor α, death receptor-6, and connective tissue growth factor, indicating that MT1-MMP is an important signaling protease in addition to its traditionally ascribed roles in pericellular matrix remodeling. Moreover, the high-throughput and quantitative nature of isotope-coded affinity tag labeling combined with tandem MS sequencing is a previously undescribed degradomic screen for protease substrate discovery that should be generally adaptable to other classes of protease for exploring proteolytic function in complex and dynamic biological contexts.

268 citations

Journal ArticleDOI
TL;DR: The data suggest that vesicle-stimulated proteinase activation leads to increased extracellular matrix degradation, which may facilitate tumor cell invasion and metastasis.
Abstract: Malignant ovarian ascites are rich in cellular components, membrane-bound vesicles, and soluble proteins. This study focused on the structure of membrane-bound vesicles and their ability to promote invasion in cultured malignant ovarian epithelium. Membrane vesicles were derived from women with stage I-IV malignant ovarian ascites and from nonmalignant gynecologic ascites. Isolated vesicles were characterized by immunofluorescence and Western blot analysis. Using gel zymography for matrix metalloproteinase (MMP) detection and a colorimetric assay for urokinase-type plasminogen activator (uPA) analysis, we analyzed the proteinase activities of MMP-2, MMP-9, and uPA from the prepared vesicles, whole cells isolated from ascites, and the cell-free ultracentrifuged supernatant. The invasiveness of established cultured malignant ovarian epithelium on addition of ascites-derived vesicles was tested using a Matrigel-based invasion assay. Fractionation of malignant ascites revealed that extracellular matrix-degrading proteinases including MMPs and uPA are localized preferentially in membrane vesicles. All malignant vesicles tested, regardless of cancer stage, stimulated invasion. Furthermore, the combination of ovarian cancer cells and membrane vesicles resulted in greater uPA activation than that of cells or vesicles alone. Membrane vesicles from malignant ascites were also found to contain activated MMP-2, MMP-9, and uPA. Our data suggest that vesicle-stimulated proteinase activation leads to increased extracellular matrix degradation, which may facilitate tumor cell invasion and metastasis.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a Support Vector Machine (SVM) method based on recursive feature elimination (RFE) was proposed to select a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays.
Abstract: DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues. In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate.

7,939 citations

Journal ArticleDOI
24 Jan 1997-Cell
TL;DR: This work has identified endostatin, an angiogenesis inhibitor produced by hemangioendothelioma, a 20 kDa C-terminal fragment of collagen XVIII that specifically inhibits endothelial proliferation and potently inhibitsAngiogenesis and tumor growth.

4,613 citations

Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner.

4,185 citations

Journal ArticleDOI
25 Nov 2009-Cell
TL;DR: Reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence, and data show how collagenCrosslinking can modulate tissue fibrosis and stiffness to force focal adhesion, growth factor signaling and breast malignancies.

3,396 citations

Journal ArticleDOI
TL;DR: Cancer cells possess a broad spectrum of migration and invasion mechanisms and learning more about the cellular and molecular basis of these different migration/invasion programmes will help to understand how cancer cells disseminate and lead to new treatment strategies.
Abstract: Cancer cells possess a broad spectrum of migration and invasion mechanisms. These include both individual and collective cell-migration strategies. Cancer therapeutics that are designed to target adhesion receptors or proteases have not proven to be effective in slowing tumour progression in clinical trials — this might be due to the fact that cancer cells can modify their migration mechanisms in response to different conditions. Learning more about the cellular and molecular basis of these different migration/invasion programmes will help us to understand how cancer cells disseminate and lead to new treatment strategies.

3,064 citations