scispace - formally typeset
Search or ask a question
Author

M. Thangavel

Bio: M. Thangavel is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Elasticity (physics) & Finite element method. The author has an hindex of 2, co-authored 2 publications receiving 183 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, size dependent linear free flexural vibration behavior of functionally graded (FG) nanoplates using the iso-geometric based finite element method was investigated using non-uniform rational B-splines.

197 citations

Posted Content
TL;DR: In this paper, the linear free flexural vibration behavior of functionally graded (FG) size-dependent nanoplates using the finite element method was investigated by using Eringen's differential form of nonlocal elasticity theory.
Abstract: In this paper, the linear free flexural vibration behaviour of functionally graded (FG) size-dependent nanoplates are investigated using the finite element method. The field variables are approximated by non-uniform rational B-splines. The size-dependent FG nanoplate is investigated by using Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for FG nanoplate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is tested considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of FG nanoplate.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, wave propagation analysis of an inhomogeneous functionally graded (FG) nanoplate subjected to nonlinear thermal loading is investigated by the means of nonlocal strain gradient theory.

281 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review on the development of higher-order continuum models for capturing size effects in small-scale structures is presented, mainly focusing on the size-dependent beam, plate and shell models developed based on the nonlocal elasticity theory, modified couple stress theory and strain gradient theory.

275 citations

Journal ArticleDOI
TL;DR: In this article, a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on an elastic foundation is presented, which takes into account the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscales plate and thus, it avoids the employ use of shear correction factors.
Abstract: The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton's principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.

208 citations

Journal ArticleDOI
TL;DR: In this paper, the free vibration analysis of Euler-Bernoulli nano-beams made of bi-directional functionally graded material (BDFGM) with small scale effects is investigated.

207 citations

Journal ArticleDOI
TL;DR: The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements and is successfully applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates.

205 citations