scispace - formally typeset
Search or ask a question
Author

M. Van Montagu

Bio: M. Van Montagu is an academic researcher from Ghent University. The author has contributed to research in topics: Agrobacterium tumefaciens & Gene. The author has an hindex of 105, co-authored 300 publications receiving 37522 citations. Previous affiliations of M. Van Montagu include Institut national de la recherche agronomique & Free University of Brussels.


Papers
More filters
Journal ArticleDOI
TL;DR: This review discusses the dual action of AOS during plant stress responses, which was first described in pathogenesis but has also recently been demonstrated during several abiotic stress responses.
Abstract: Adaptation to environmental changes is crucial for plant growth and survival. However, the molecular and biochemical mechanisms of adaptation are still poorly understood and the signaling pathways involved remain elusive. Active oxygen species (AOS) have been proposed as a central component of plant adaptation to both biotic and abiotic stresses. Under such conditions, AOS may play two very different roles: exacerbating damage or signaling the activation of defense responses. Such a dual function was first described in pathogenesis but has also recently been demonstrated during several abiotic stress responses. To allow for these different roles, cellular levels of AOS must be tightly controlled. The numerous AOS sources and a complex system of oxidant scavengers provide the flexibility necessary for these functions. This review discusses the dual action of AOS during plant stress responses.

1,815 citations

Journal ArticleDOI
TL;DR: The role of L-AA in metabolism and the latest studies regarding its bio- synthesis, tissue compartmentalisation, turnover and catabolism are focused on, as well as the potential to improve the L- AA content of crops.
Abstract: Humans are unable to synthesise L-ascorbic acid (L-AA, ascorbate, vitamin C), and are thus entirely dependent upon dietary sources to meet needs. In both plant and animal metabolism, the biological functions of L-ascorbic acid are centred around the antioxidant properties of this molecule. Considerable evidence has been accruing in the last two decades of the importance of L-AA in protecting not only the plant from oxidative stress, but also mammals from various chronic diseases that have their origins in oxidative stress. Evidence suggests that the plasma levels of L-AA in large sections of the population are sub-optimal for the health protective effects of this vitamin. Until quite recently, little focus has been given to improving the L-AA content of plant foods, either in terms of the amounts present in commercial crop varieties, or in minimising losses prior to ingestion. Further, while L-AA biosynthesis in animals was elucidated in the 1960s, 1 it is only very recently that a distinct biosynthetic route for plants has been proposed. 2 The characterisation of this new pathway will undoubtedly provide the necessary focus and impetus to enable fundamental questions on plant L-AA metabolism to be resolved. This review focuses on the role of L-AA in metabolism and the latest studies regarding its bio- synthesis, tissue compartmentalisation, turnover and catabolism. These inter-relationships are considered in relation to the potential to improve the L-AA content of crops. Methodology for the reliable analysis of L-AA in plant foods is briefly reviewed. The concentrations found in common food sources and the effects of processing, or storage prior to consumption are discussed. Finally the factors that determine the bioavailability of L-AA and how it may be improved are considered, as well as the most important future research needs. # 2000 Society of Chemical Industry

1,279 citations

Journal ArticleDOI
TL;DR: It is shown that in addition to its functions during flower development, AP2 activity is also required during seed development, and this suggests that AP2 represents a new class of plant regulatory proteins that may play a general role in the control of Arabidopsis development.
Abstract: APETALA2 (AP2) plays a central role in the establishment of the floral meristem, the specification of floral organ identity, and the regulation of floral homeotic gene expression in Arabidopsis. We show here that in addition to its functions during flower development, AP2 activity is also required during seed development. We isolated the AP2 gene and found that it encodes a putative nuclear protein that is distinguished by an essential 68-amino acid repeated motif, the AP2 domain. Consistent with its genetic functions, we determined that AP2 is expressed at the RNA level in all four types of floral organs--sepals, petals, stamens, and carpels--and in developing ovules. Thus, AP2 gene transcription does not appear to be spatially restricted by the floral homeotic gene AGAMOUS as predicted by previous studies. We also found that AP2 is expressed at the RNA level in the inflorescence meristem and in nonfloral organs, including leaf and stem. Taken together, our results suggest that AP2 represents a new class of plant regulatory proteins that may play a general role in the control of Arabidopsis development.

1,008 citations

Journal ArticleDOI
TL;DR: These experiments provide further evidence that the Ti-plasmid is responsible for the oncogenic properties of A tumefaciens and for its capacity to induce “opine” synthesis in Crown-gall plant cells.
Abstract: The freeze thaw transfection procedure of Dityatkin et al. (1972) was adapted for the transfection and transformation of A. tumefaciens. Transfection of the strains B6S3 and B6-6 with DNA of the temperate phage PS8cc186 yielded a maximum frequency of 2 10-7 transfectants per total recipient population. In transformation of the strain GV3100 with the P type plasmid RP4 a maximum frequency of 3.5 10-7 transformants per total recipient population was obtained. Agrobacterium Ti-plasmids were introduced in the strain GV3100 with a maximal efficiency of 4.5 10-8. These experiments provide further evidence that the Ti-plasmid is responsible for the oncogenic properties of A tumefaciens and for its capacity to induce “opine” synthesis in Crown-gall plant cells.

950 citations

Journal ArticleDOI
TL;DR: Transgenic plants showed complete resistance towards high doses of the commercial formulations of phosphinothricin and bialaphos, presenting a successful approach to obtain herbicide‐resistant plants by detoxification of the herbicide.
Abstract: Phosphinothricin (PPT) is a potent inhibitor of glutamine synthetase in plants and is used as a non-selective herbicide. The bar gene which confers resistance in Streptomyces hygroscopicus to bialaphos, a tripeptide containing PPT, encodes a phosphinothricin acetyltransferase (PAT) (see accompanying paper). The bar gene was placed under control of the 35S promoter of the cauliflower mosaic virus and transferred to plant cells using Agrobacterium-mediated transformation. PAT was used as a selectable marker in protoplast co-cultivation. The chimeric bar gene was expressed in tobacco, potato and tomato plants. Transgenic plants showed complete resistance towards high doses of the commercial formulations of phosphinothricin and bialaphos. These data present a successful approach to obtain herbicide-resistant plants by detoxification of the herbicide.

934 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: GUS is very stable, and tissue extracts continue to show high levels of GUS activity after prolonged storage, and Histochemical analysis has been used to demonstrate the localization of gene activity in cells and tissues of transformed plants.
Abstract: We have used the Escherichia coli beta-glucuronidase gene (GUS) as a gene fusion marker for analysis of gene expression in transformed plants. Higher plants tested lack intrinsic beta-glucuronidase activity, thus enhancing the sensitivity with which measurements can be made. We have constructed gene fusions using the cauliflower mosaic virus (CaMV) 35S promoter or the promoter from a gene encoding the small subunit of ribulose bisphosphate carboxylase (rbcS) to direct the expression of beta-glucuronidase in transformed plants. Expression of GUS can be measured accurately using fluorometric assays of very small amounts of transformed plant tissue. Plants expressing GUS are normal, healthy and fertile. GUS is very stable, and tissue extracts continue to show high levels of GUS activity after prolonged storage. Histochemical analysis has been used to demonstrate the localization of gene activity in cells and tissues of transformed plants.

9,765 citations

Journal ArticleDOI
TL;DR: Key steps of the signal transduction pathway that senses ROIs in plants have been identified and raise several intriguing questions about the relationships between ROI signaling, ROI stress and the production and scavenging ofROIs in the different cellular compartments.

9,395 citations

Journal ArticleDOI
14 Dec 2000-Nature
TL;DR: This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Abstract: The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.

8,742 citations

Journal ArticleDOI
TL;DR: The biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery are described, which protects plants against oxidative stress damages.

8,259 citations

Journal ArticleDOI
TL;DR: In this paper, a new vector strategy for the insertion of foreign genes into the genomes of gram negative bacteria not closely related to Escherichia coli was developed, which can utilize any gram negative bacterium as a recipient for conjugative DNA transfer.
Abstract: We have developed a new vector strategy for the insertion of foreign genes into the genomes of gram negative bacteria not closely related to Escherichia coli. The system consists of two components: special E. coli donor strains and derivatives of E. coli vector plasmids. The donor strains (called mobilizing strains) carry the transfer genes of the broad host range IncP–type plasmid RP4 integrated in their chromosomes. They can utilize any gram negative bacterium as a recipient for conjugative DNA transfer. The vector plasmids contain the P–type specific recognition site for mobilization (Mob site) and can be mobilized with high frequency from the donor strains. The mobilizable vectors are derived from the commonly used E. coli vectors pACYC184, pACYC177, and pBR325, and are unable to replicate in strains outside the enteric bacterial group. Therefore, they are widely applicable as transposon carrier replicons for random transposon insertion mutagenesis in any strain into which they can be mobilized but not stably maintained. The vectors are especially useful for site–directed transposon mutagenesis and for site–specific gene transfer in a wide variety of gram negative organisms.

7,278 citations