scispace - formally typeset
Search or ask a question
Author

M. W. S. J. M. van Slageren

Bio: M. W. S. J. M. van Slageren is an academic researcher. The author has contributed to research in topics: Tribe (biology) & Aegilops. The author has an hindex of 1, co-authored 1 publications receiving 434 citations.


Cited by
More filters
01 Jan 2002
TL;DR: This article used population genetic theory to predict the evolutionary consequences of gene flow from crops to wild plants and discuss two applied consequences of crop-to-wild gene flow -the evolution of aggressive weeds and the extinction of rare species.
Abstract: ▪ Abstract Domesticated plant taxa cannot be regarded as evolutionarily discrete from their wild relatives. Most domesticated plant taxa mate with wild relatives somewhere in the world, and gene flow from crop taxa may have a substantial impact on the evolution of wild populations. In a literature review of the world's 13 most important food crops, we show that 12 of these crops hybridize with wild relatives in some part of their agricultural distribution. We use population genetic theory to predict the evolutionary consequences of gene flow from crops to wild plants and discuss two applied consequences of crop-to-wild gene flow–the evolution of aggressive weeds and the extinction of rare species. We suggest ways of assessing the likelihood of hybridization, introgression, and the potential for undesirable gene flow from crops into weeds or rare species.

865 citations

Journal ArticleDOI
TL;DR: As several sources of improved Na+ "exclusion" are now known to reside on different chromosomes in various genomes of species in the Triticeae, further work to identify the underlying mechanisms and then to pyramid the controlling genes for the various traits might enable substantial gains in salt tolerance to be achieved.
Abstract: There is considerable variability in salt tolerance amongst members of the Triticeae, with the tribe even containing a number of halophytes. This is a review of what is known of the differences in salt tolerance of selected species in this tribe of grasses, and the potential to use wild species to improve salt tolerance in wheat. Most investigators have concentrated on differences in ion accumulation in leaves, describing a desirable phenotype with low leaf Na+ concentration and a high K+/Na+ ratio. Little information is available on other traits (such as "tissue tolerance" of accumulated Na+ and Cl-) that might also contribute to salt tolerance. The sources of Na+ "exclusion" amongst the various genomes that make up tetraploid (AABB) durum wheat (Triticum turgidum L. ssp. durum), hexaploid (AABBDD) bread wheat (Triticum aestivum L. ssp. aestivum), and wild relatives (e.g. Aegilops spp., Thinopyrum spp., Elytrigia elongata syn. Lophopyrum elongatum, Hordeum spp.) are described. The halophytes display a capacity for Na+ "exclusion", and in some cases Cl- "exclusion", even at relatively high salinity. Significantly, it is possible to hybridize several wild species in the Triticeae with durum and bread wheat. Progenitors have been used to make synthetic hexaploids. Halophytic relatives, such as tall wheatgrass spp., have been used to produce amphiploids, disomic chromosome addition and substitution lines, and recombinant lines in wheat. Examples of improved Na+ "exclusion" and enhanced salt tolerance in various derivatives from these various hybridization programmes are given. As several sources of improved Na+ "exclusion" are now known to reside on different chromosomes in various genomes of species in the Triticeae, further work to identify the underlying mechanisms and then to pyramid the controlling genes for the various traits, that could act additively or even synergistically, might enable substantial gains in salt tolerance to be achieved.

486 citations

Journal ArticleDOI
TL;DR: Polymorphism in the lengths of restriction fragments at 53 single-copy loci, the rRNA locus Nor3, and the high-molecular-weight glutenin locus Glu1 was investigated in the D genome of hexaploid Triticum aestivum and that of Aegilops tauschii, and all appear to share a single D-genome genepool.
Abstract: Polymorphism in the lengths of restriction fragments at 53 single-copy loci, the rRNA locus Nor3, and the high-molecular-weight glutenin locus Glu1 was investigated in the D genome of hexaploid Triticum aestivum and that of Aegilops tauschii, the source of the T. aestivum D genome. The distribution of genetic variation in Ae. tauschii suggests gene flow between Ae. tauschii ssp. strangulata and ssp. tauschii in Iran but less in Transcaucasia. The “strangulata” genepool is wider than it appears on the basis of morphology and includes ssp. strangulata in Transcaucasia and southeastern (SE) Caspian Iran and ssp. tauschii in north-central Iran and southwestern (SW) Caspian Iran. In the latter region, Ae. tauschii morphological varieties ‘meyeri’ and ‘typica’ are equidistant to ssp. strangulata in Transcaucasia, and both belong to the “strangulata” genepool. A model of the evolution of Ae. tauschii is presented. On the geographic region basis, the D genomes of all investigated forms of T. aestivum are most closely related to the “strangulata” genepool in Transcaucasia, Armenia in particular, and SW Caspian Iran. It is suggested that the principal area of the origin of T. aestivum is Armenia, but the SW coastal area of the Caspian Sea and a corridor between the two areas may have played a role as well. Little genetic differentiation was found among the D genomes of all investigated free-threshing and hulled forms of T. aestivum, and all appear to share a single D-genome genepool, in spite of the fact that several Ae. tauschii parents were involved in the evolution of T. aestivum.

406 citations

Journal ArticleDOI
TL;DR: The phylogenetic hypothesis suggests that neither Triticum, Aegilops, nor Triticus plus Aegilop are monophyletic, and further suggests that the polyploid wheats of common wheat and tetraploid wheat are bothopolyploid.

333 citations

16 Jul 2012
TL;DR: Part 1. Evolutionary Processes 1. Chromosome Structure and genetic Variability 2. Assortment of Genetic Variability 3. The Multifactoral Genome 4. Polyploidy and Gene Duplication 5. Speciation

273 citations