scispace - formally typeset
Search or ask a question
Author

Ma Ángeles Sanromán

Bio: Ma Ángeles Sanromán is an academic researcher from University of Vigo. The author has contributed to research in topics: Phenanthrene & Bioreactor. The author has an hindex of 43, co-authored 132 publications receiving 5417 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the application of SSF to the production of several metabolites relevant for the food processing industry, centred on flavors, enzymes (α-amylase, fructosyl transferase, lipase, pectinase), organic acids (lactic acid, citric acid) and xanthan gum.

638 citations

Journal ArticleDOI
TL;DR: The foremost principles to carry out the electroremediation of soils contaminated with PAHs are described, just like the different alternatives to improve the Electroremediations ofPAHs and also the new methodologies of PAhs removal by using hybrid technologies are described.

192 citations

Journal ArticleDOI
TL;DR: In this article, the effect of redox mediators on synthetic acid dye decolourization (Sella Solid Red and Luganil Green) by laccase from Trametes hirsuta cultures has been investigated.

163 citations

Journal ArticleDOI
TL;DR: Results obtained after inhibition of growth of T. hirsuta by antibiotics indicated that dye decolourization could not exclusively be attributed to laccase activity.

159 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of key parameters (iron dosage and pH) that play an important role in this process was investigated for Lissamine Green B decoloration in batch mode.

148 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the electrochemical methods used at lab and pilot plant scale to decontaminate synthetic and real effluents containing dyes, considering the period from 2009 to 2013, as an update of our previous review up to 2008.
Abstract: As the environment preservation gradually becomes a matter of major social concern and more strict legislation is being imposed on effluent discharge, more effective processes are required to deal with non-readily biodegradable and toxic pollutants. Synthetic organic dyes in industrial effluents cannot be destroyed in conventional wastewater treatment and consequently, an urgent challenge is the development of new environmentally benign technologies able to mineralize completely these non-biodegradable compounds. This review aims to increase the knowledge on the electrochemical methods used at lab and pilot plant scale to decontaminate synthetic and real effluents containing dyes, considering the period from 2009 to 2013, as an update of our previous review up to 2008. Fundamentals and main applications of electrochemical advanced oxidation processes and the other electrochemical approaches are described. Typical methods such as electrocoagulation, electrochemical reduction, electrochemical oxidation and indirect electro-oxidation with active chlorine species are discussed. Recent advances on electrocatalysis related to the nature of anode material to generate strong heterogeneous OH as mediated oxidant of dyes in electrochemical oxidation are extensively examined. The fast destruction of dyestuffs mediated with electrogenerated active chlorine is analyzed. Electro-Fenton and photo-assisted electrochemical methods like photoelectrocatalysis and photoelectro-Fenton, which destroy dyes by heterogeneous OH and/or homogeneous OH produced in the solution bulk, are described. Current advantages of the exposition of effluents to sunlight in the emerging photo-assisted procedures of solar photoelectrocatalysis and solar photoelectro-Fenton are detailed. The characteristics of novel combined methods involving photocatalysis, adsorption, nanofiltration, microwaves and ultrasounds among others and the use of microbial fuel cells are finally discussed.

3,112 citations

Journal ArticleDOI
TL;DR: In this article, an exhaustive review on the treatment of various synthetic and real wastewaters by five key EAOPs, i.e., anodic oxidation (AO), anodic oxidation with electrogenerated H 2 O 2, electro-Fenton (EF), photoelectro-fenton (PEF), alone and in combination with other methods like biological treatment, electrocoagulation, coagulation and membrane filtration processes.
Abstract: Over the last decades, research efforts have been made at developing more effective technologies for the remediation of waters containing persistent organic pollutants. Among the various technologies, the so-called electrochemical advanced oxidation processes (EAOPs) have caused increasing interest. These technologies are based on the electrochemical generation of strong oxidants such as hydroxyl radicals ( OH). Here, we present an exhaustive review on the treatment of various synthetic and real wastewaters by five key EAOPs, i.e., anodic oxidation (AO), anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF), alone and in combination with other methods like biological treatment, electrocoagulation, coagulation and membrane filtration processes. Fundamentals of each EAOP are also given.

1,457 citations

Journal ArticleDOI
TL;DR: In this critical review, some of the most promising electrochemical tools for the treatment of wastewater contaminated by organic pollutants are discussed in detail and the critical assessment of the reactors that can be used to put these technologies into practice is devoted.
Abstract: Traditional physicochemical and biological techniques, as well as advanced oxidation processes (AOPs), are often inadequate, ineffective, or expensive for industrial water reclamation. Within this context, the electrochemical technologies have found a niche where they can become dominant in the near future, especially for the abatement of biorefractory substances. In this critical review, some of the most promising electrochemical tools for the treatment of wastewater contaminated by organic pollutants are discussed in detail with the following goals: (1) to present the fundamental aspects of the selected processes; (2) to discuss the effect of both the main operating parameters and the reactor design on their performance; (3) to critically evaluate their advantages and disadvantages; and (4) to forecast the prospect of their utilization on an applicable scale by identifying the key points to be further investigated. The review is focused on the direct electrochemical oxidation, the indirect electrochemical oxidation mediated by electrogenerated active chlorine, and the coupling between anodic and cathodic processes. The last part of the review is devoted to the critical assessment of the reactors that can be used to put these technologies into practice.

1,197 citations