scispace - formally typeset
Search or ask a question
Author

Maayane T. Soumagnac

Bio: Maayane T. Soumagnac is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Supernova & Population. The author has an hindex of 27, co-authored 80 publications receiving 3562 citations. Previous affiliations of Maayane T. Soumagnac include University College London & Weizmann Institute of Science.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Eric C. Bellm1, Shrinivas R. Kulkarni2, Matthew J. Graham2, Richard Dekany2, Roger M. H. Smith2, Reed Riddle2, Frank J. Masci2, George Helou2, Thomas A. Prince2, Scott M. Adams2, Cristina Barbarino3, Tom A. Barlow2, James Bauer4, Ron Beck2, Justin Belicki2, Rahul Biswas3, Nadejda Blagorodnova2, Dennis Bodewits4, Bryce Bolin1, V. Brinnel5, Tim Brooke2, Brian D. Bue2, Mattia Bulla3, Rick Burruss2, S. Bradley Cenko4, S. Bradley Cenko6, Chan-Kao Chang7, Andrew J. Connolly1, Michael W. Coughlin2, John Cromer2, Virginia Cunningham4, Kaushik De2, Alex Delacroix2, Vandana Desai2, Dmitry A. Duev2, Gwendolyn Eadie1, Tony L. Farnham4, Michael Feeney2, Ulrich Feindt3, David Flynn2, Anna Franckowiak, Sara Frederick4, Christoffer Fremling2, Avishay Gal-Yam8, Suvi Gezari4, Matteo Giomi5, Daniel A. Goldstein2, V. Zach Golkhou1, Ariel Goobar3, Steven Groom2, Eugean Hacopians2, David Hale2, John Henning2, Anna Y. Q. Ho2, David Hover2, Justin Howell2, Tiara Hung4, Daniela Huppenkothen1, David Imel2, Wing-Huen Ip9, Wing-Huen Ip7, Željko Ivezić1, Edward Jackson2, Lynne Jones1, Mario Juric1, Mansi M. Kasliwal2, Shai Kaspi10, Stephen Kaye2, Michael S. P. Kelley4, Marek Kowalski5, Emily Kramer2, Thomas Kupfer2, Thomas Kupfer11, Walter Landry2, Russ R. Laher2, Chien De Lee7, Hsing Wen Lin12, Hsing Wen Lin7, Zhong-Yi Lin7, Ragnhild Lunnan3, Ashish Mahabal2, Peter H. Mao2, Adam A. Miller13, Adam A. Miller14, Serge Monkewitz2, Patrick J. Murphy2, Chow-Choong Ngeow7, Jakob Nordin5, Peter Nugent15, Peter Nugent16, Eran O. Ofek8, Maria T. Patterson1, Bryan E. Penprase17, Michael Porter2, L. Rauch, Umaa Rebbapragada2, Daniel J. Reiley2, Mickael Rigault18, Hector P. Rodriguez2, Jan van Roestel19, Ben Rusholme2, J. V. Santen, Steve Schulze8, David L. Shupe2, Leo Singer4, Leo Singer6, Maayane T. Soumagnac8, Robert Stein, Jason Surace2, Jesper Sollerman3, Paula Szkody1, Francesco Taddia3, Scott Terek2, Angela Van Sistine20, Sjoert van Velzen4, W. Thomas Vestrand21, Richard Walters2, Charlotte Ward4, Quanzhi Ye2, Po-Chieh Yu7, Lin Yan2, Jeffry Zolkower2 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope, which provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey.
Abstract: The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.

1,009 citations

Journal ArticleDOI
T. M. C. Abbott, F. B. Abdalla1, Jelena Aleksić2, S. Allam3  +153 moreInstitutions (43)
TL;DR: In this paper, the authors presented the results of the Dark Energy Survey (DES) 2013, 2014, 2015, 2016, 2017, 2018, 2019 and 2019 at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
Abstract: US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia; Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; University of California at Santa Cruz; University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago, University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; European Research Council [FP7/291329]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478]

789 citations

Journal ArticleDOI
Matthew J. Graham, Shrinivas R. Kulkarni, Eric C. Bellm, Scott M. Adams, Cristina Barbarino, Nadejda Blagorodnova, Dennis Bodewits, Bryce Bolin, Patrick Brady, S. Bradley Cenko, Chan-Kao Chang, Michael W. Coughlin, Kaushik De, Gwendolyn Eadie, Tony L. Farnham, Ulrich Feindt, Anna Franckowiak, Christoffer Fremling, Avishay Gal-Yam, Suvi Gezari, Sourav Ghosh, Daniel A. Goldstein, V. Zach Golkhou, Ariel Goobar, Anna Y. Q. Ho, Daniela Huppenkothen, Zeljko Ivezic, R. Lynne Jones, Mario Juric, David L. Kaplan, Mansi M. Kasliwal, Michael S. P. Kelley, Thomas Kupfer, Chien-De Lee, Hsing Wen Lin, Ragnhild Lunnan, Ashish Mahabal, Adam A. Miller, Chow-Choong Ngeow, Peter Nugent, Eran O. Ofek, Thomas A. Prince, L. Rauch, Jan van Roestel, Steve Schulze, Leo Singer, Jesper Sollerman, Francesco Taddia, Lin Yan, Quanzhi Ye, Po-Chieh Yu, Igor Andreoni, Tom A. Barlow, James M. Bauer, Ron Beck, Justin Belicki, Rahul Biswas, V. Brinnel, Tim Brooke, Brian D. Bue, Mattia Bulla, Kevin B. Burdge, Rick Burruss, Andrew J. Connolly, John Cromer, Virginia Cunningham, Richard Dekany, Alex Delacroix, Vandana Desai, Dmitry A. Duev, Eugean Hacopians, David Hale, George Helou, John Henning, David Hover, Lynne A. Hillenbrand, Justin Howell, Tiara Hung, David Imel, Wing-Huen Ip, Edward Jackson, Shai Kaspi, Stephen Kaye, Marek Kowalski, Emily Kramer, Michael A. Kuhn, Walter Landry, Russ R. Laher, Peter H. Mao, Frank J. Masci, Serge Monkewitz, Patrick J. Murphy, J. Nordin, Maria T. Patterson, Bryan E. Penprase, Michael Porter, Umaa Rebbapragada, Daniel J. Reiley, Reed Riddle, Mickael Rigault, Hector P. Rodriguez, Ben Rusholme, J. V. Santen, David L. Shupe, Roger M. H. Smith, Maayane T. Soumagnac, Robert Stein, Jason Surace, Paula Szkody, Scott Terek, Angela Van Sistine, Sjoert van Velzen, W. Thomas Vestrand, Richard Walters, Charlotte Ward, Chaoran Zhang, Jeffry Zolkower 
TL;DR: The Zwicky Transient Facility (ZTF) as discussed by the authors is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time.
Abstract: The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in the development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $\sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.

501 citations

Journal ArticleDOI
Matthew J. Graham1, Shrinivas R. Kulkarni1, Eric C. Bellm2, Scott M. Adams1, Cristina Barbarino3, Nadejda Blagorodnova1, Dennis Bodewits4, Dennis Bodewits5, Bryce Bolin2, Patrick Brady6, S. Bradley Cenko5, S. Bradley Cenko7, Chan-Kao Chang8, Michael W. Coughlin1, Kaushik De1, Gwendolyn Eadie2, Tony L. Farnham5, Ulrich Feindt3, Anna Franckowiak, Christoffer Fremling1, Suvi Gezari7, Suvi Gezari5, Sourav Ghosh6, Daniel A. Goldstein1, V. Zach Golkhou2, Ariel Goobar3, Anna Y. Q. Ho1, Daniela Huppenkothen2, Željko Ivezić2, R. Lynne Jones2, Mario Juric2, David L. Kaplan6, Mansi M. Kasliwal1, Michael S. P. Kelley5, Thomas Kupfer9, Thomas Kupfer1, Chien De Lee8, Hsing Wen Lin10, Hsing Wen Lin8, Ragnhild Lunnan3, Ashish Mahabal1, Adam A. Miller11, Adam A. Miller12, Chow-Choong Ngeow8, Peter Nugent13, Peter Nugent14, Eran O. Ofek15, Thomas A. Prince1, L. Rauch, Jan van Roestel16, Steve Schulze15, Leo Singer7, Leo Singer5, Jesper Sollerman3, Francesco Taddia3, Lin Yan1, Quanzhi Ye1, Po-Chieh Yu8, Tom A. Barlow1, James Bauer5, Ron Beck1, Justin Belicki1, Rahul Biswas3, V. Brinnel17, Tim Brooke1, Brian D. Bue1, Mattia Bulla3, Rick Burruss1, Andrew J. Connolly2, John Cromer1, Virginia Cunningham5, Richard Dekany1, Alex Delacroix1, Vandana Desai1, Dmitry A. Duev1, Michael Feeney1, David Flynn1, Sara Frederick5, Avishay Gal-Yam15, Matteo Giomi17, Steven Groom1, Eugean Hacopians1, David Hale1, George Helou1, John Henning1, David Hover1, Lynne A. Hillenbrand1, Justin Howell1, Tiara Hung5, David Imel1, Wing-Huen Ip18, Wing-Huen Ip8, Edward Jackson1, Shai Kaspi19, Stephen Kaye1, Marek Kowalski17, E. A. Kramer1, Michael A. Kuhn1, Walter Landry1, Russ R. Laher1, Peter H. Mao1, Frank J. Masci1, Serge Monkewitz1, Patrick J. Murphy1, Jakob Nordin17, Maria T. Patterson2, Bryan E. Penprase20, Michael Porter1, Umaa Rebbapragada1, Daniel J. Reiley1, Reed Riddle1, Mickael Rigault21, Hector Rodriguez1, Ben Rusholme1, J. V. Santen, David L. Shupe1, Roger M. H. Smith1, Maayane T. Soumagnac15, Robert Stein, Jason Surace1, Paula Szkody2, Scott Terek1, Angela Van Sistine6, Sjoert van Velzen5, W. Thomas Vestrand22, Richard Walters1, Charlotte Ward5, Chaoran Zhang6, Jeffry Zolkower1 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time.
Abstract: The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r ~ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects.

280 citations

Journal ArticleDOI
TL;DR: The first plausible optical electromagnetic counterpart to a (candidate) binary black hole merger in the accretion disk of an active galactic nucleus is reported, and a repeat flare in this source due to a reencountering with the disk is predicted.
Abstract: We report the first plausible optical electromagnetic counterpart to a (candidate) binary black hole merger Detected by the Zwicky Transient Facility, the electromagnetic flare is consistent with expectations for a kicked binary black hole merger in the accretion disk of an active galactic nucleus [B McKernan, K E S Ford, I Bartos et al, Astrophys J Lett 884, L50 (2019)AJLEEY2041-8213103847/2041-8213/ab4886] and is unlikely [

243 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
Peter A. R. Ade, Nabila Aghanim, Monique Arnaud, Frederico Arroja, M. Ashdown, J. Aumont, Carlo Baccigalupi, Mario Ballardini, A. J. Banday, R. B. Barreiro, Nicola Bartolo, E. Battaner, K. Benabed, Alain Benoit, A. Benoit-Lévy, J.-P. Bernard, Marco Bersanelli, P. Bielewicz, J. J. Bock, Anna Bonaldi, Laura Bonavera, J. R. Bond, Julian Borrill, François R. Bouchet, F. Boulanger, M. Bucher, Carlo Burigana, R. C. Butler, Erminia Calabrese, Jean-François Cardoso, A. Catalano, Anthony Challinor, A. Chamballu, R.-R. Chary, H. C. Chiang, P. R. Christensen, Sarah E. Church, David L. Clements, S. Colombi, L. P. L. Colombo, C. Combet, D. Contreras, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, Luigi Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, Jacques Delabrouille, F.-X. Désert, Jose M. Diego, H. Dole, S. Donzelli, Olivier Doré, Marian Douspis, A. Ducout, X. Dupac, George Efstathiou, F. Elsner, Torsten A. Ensslin, H. K. Eriksen, James R. Fergusson, Fabio Finelli, Olivier Forni, M. Frailis, Aurelien A. Fraisse, E. Franceschi, A. Frejsel, Andrei V. Frolov, S. Galeotta, Silvia Galli, K. Ganga, C. Gauthier, M. Giard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo, Krzysztof M. Gorski, Serge Gratton, A. Gregorio, Alessandro Gruppuso, Jon E. Gudmundsson, Jan Hamann, Will Handley, F. K. Hansen, Duncan Hanson, D. L. Harrison, Sophie Henrot-Versille, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, Michael P. Hobson, W. A. Holmes 
TL;DR: In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
Abstract: We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_\mathrm{s}=0.9649\pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_\mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V" (\phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.

3,438 citations

Journal ArticleDOI
TL;DR: The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way.
Abstract: (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg$^2$ field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5$\sigma$ point-source depth in a single visit in $r$ will be $\sim 24.5$ (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg$^2$ with $\delta<+34.5^\circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg$^2$ region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to $r\sim27.5$. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.

2,738 citations

Journal ArticleDOI
Shadab Alam1, Metin Ata2, Stephen Bailey3, Florian Beutler3, Dmitry Bizyaev4, Dmitry Bizyaev5, Jonathan Blazek6, Adam S. Bolton7, Joel R. Brownstein7, Angela Burden8, Chia-Hsun Chuang9, Chia-Hsun Chuang2, Johan Comparat9, Antonio J. Cuesta10, Kyle S. Dawson7, Daniel J. Eisenstein11, Stephanie Escoffier12, Héctor Gil-Marín13, Héctor Gil-Marín14, Jan Niklas Grieb15, Nick Hand16, Shirley Ho1, Karen Kinemuchi4, D. Kirkby17, Francisco S. Kitaura16, Francisco S. Kitaura3, Francisco S. Kitaura2, Elena Malanushenko4, Viktor Malanushenko4, Claudia Maraston18, Cameron K. McBride11, Robert C. Nichol18, Matthew D. Olmstead19, Daniel Oravetz4, Nikhil Padmanabhan8, Nathalie Palanque-Delabrouille, Kaike Pan4, Marcos Pellejero-Ibanez20, Marcos Pellejero-Ibanez21, Will J. Percival18, Patrick Petitjean22, Francisco Prada9, Francisco Prada20, Adrian M. Price-Whelan23, Beth Reid16, Beth Reid3, Sergio Rodríguez-Torres20, Sergio Rodríguez-Torres9, Natalie A. Roe3, Ashley J. Ross6, Ashley J. Ross18, Nicholas P. Ross24, Graziano Rossi25, Jose Alberto Rubino-Martin21, Jose Alberto Rubino-Martin20, Shun Saito15, Salvador Salazar-Albornoz15, Lado Samushia26, Ariel G. Sánchez15, Siddharth Satpathy1, David J. Schlegel3, Donald P. Schneider27, Claudia G. Scóccola9, Claudia G. Scóccola28, Claudia G. Scóccola29, Hee-Jong Seo30, Erin Sheldon31, Audrey Simmons4, Anže Slosar31, Michael A. Strauss23, Molly E. C. Swanson11, Daniel Thomas18, Jeremy L. Tinker32, Rita Tojeiro33, Mariana Vargas Magaña1, Mariana Vargas Magaña34, Jose Alberto Vazquez31, Licia Verde, David A. Wake35, David A. Wake36, Yuting Wang37, Yuting Wang18, David H. Weinberg6, Martin White16, Martin White3, W. Michael Wood-Vasey38, Christophe Yèche, Idit Zehavi39, Zhongxu Zhai33, Gong-Bo Zhao18, Gong-Bo Zhao37 
TL;DR: In this article, the authors present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III.
Abstract: We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product D_MH from the Alcock–Paczynski (AP) effect and the growth of structure, quantified by fσ_8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between D_M and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature Ω_K = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = −1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H_0 = 67.3 ± 1.0 km s^−1 Mpc^−1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H_0 = 67.8 ± 1.2 km s^−1 Mpc^−1. Assuming flat ΛCDM, we find Ω_m = 0.310 ± 0.005 and H_0 = 67.6 ± 0.5 km s^−1 Mpc^−1, and we find a 95 per cent upper limit of 0.16 eV c^−2 on the neutrino mass sum.

2,413 citations

Journal ArticleDOI
TL;DR: The theory of weak gravitational lensing is discussed in this paper, and applications to galaxies, galaxy clusters and larger-scale structures in the universe are reviewed and summarised in detail.
Abstract: According to the theory of general relativity, masses deflect light in a way similar to convex glass lenses. This gravitational lensing effect is astigmatic, giving rise to image distortions. These distortions allow to quantify cosmic structures statistically on a broad range of scales, and to map the spatial distribution of dark and visible matter. We summarise the theory of weak gravitational lensing and review applications to galaxies, galaxy clusters and larger-scale structures in the Universe.

1,761 citations