scispace - formally typeset
Search or ask a question
Author

Maddalena Binda

Bio: Maddalena Binda is an academic researcher from Istituto Italiano di Tecnologia. The author has contributed to research in topics: Quantum efficiency & Photodetector. The author has an hindex of 16, co-authored 35 publications receiving 2200 citations. Previous affiliations of Maddalena Binda include Instituto Politécnico Nacional & Polytechnic University of Milan.

Papers
More filters
Journal ArticleDOI
TL;DR: This review suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto -electronic switch and memory.
Abstract: While organic electronics is mostly dominated by light-emitting diodes, photovoltaic cells and transistors, optoelectronics properties peculiar to organic semiconductors make them interesting candidates for the development of innovative and disruptive applications also in the field of light signal detection. In fact, organic-based photoactive media combine effective light absorption in the region of the spectrum from ultraviolet to near-infrared with good photogeneration yield and low-temperature processability over large areas and on virtually every substrate, which might enable innovative optoelectronic systems to be targeted for instance in the field of imaging, optical communications or biomedical sensing. In this review, after a brief resume of photogeneration basics and of devices operation mechanisms, we offer a broad overview of recent progress in the field, focusing on photodiodes and phototransistors. As to the former device category, very interesting values for figures of merit such as photoconversion efficiency, speed and minimum detectable signal level have been attained, and even though the simultaneous optimization of all these relevant parameters is demonstrated in a limited number of papers, real applications are within reach for this technology, as it is testified by the increasing number of realizations going beyond the single-device level and tackling more complex optoelectronic systems. As to phototransistors, a more recent subject of study in the framework of organic electronics, despite a broad distribution in the reported performances, best photoresponsivities outperform amorphous silicon-based devices. This suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto-electronic switch and memory.

1,081 citations

Journal ArticleDOI
30 Jun 2010-ACS Nano
TL;DR: A consistent mechanism for device operation is developed through a circuit model and experimental measurements, shedding light on new approaches for optimization of solar cell performance by modifying the interface between the QDs and the neighboring charge transport layers.
Abstract: We fabricate PbS colloidal quantum dot (QD)-based solar cells using a fullerene derivative as the electron-transporting layer (ETL). A thiol treatment and oxidation process are used to modify the morphology and electronic structure of the QD films, resulting in devices that exhibit a fill factor (FF) as high as 62%. We also show that, for QDs with a band gap of less than 1 eV, an open-circuit voltage (VOC) of 0.47 V can be achieved. The power conversion efficiency reaches 1.3% under 1 sun AM1.5 test conditions and 2.4% under monochromatic infrared (λ = 1310 nm) illumination. A consistent mechanism for device operation is developed through a circuit model and experimental measurements, shedding light on new approaches for optimization of solar cell performance by modifying the interface between the QDs and the neighboring charge transport layers.

437 citations

Journal ArticleDOI
TL;DR: Bulk-heterojunction based organic photodetectors are fabricated by means of drop-on-demand inkjet printing with vertical topology, inverted structure, and small footprint due to optimization of the deposition technique.
Abstract: Bulk-heterojunction based organic photodetectors are fabricated by means of drop-on-demand inkjet printing with vertical topology, inverted structure, and small footprint (about 100 μm x 100 μm). Due to optimization of the deposition technique, an external quantum efficiency in excess of 80% at 525 nm and a -3dB bandwidth of a few tens of kHz is achieved.

145 citations

Journal ArticleDOI
TL;DR: In this article, an organic photodetector showing high detectivity (34×1012 Hz05 cm/W) at a wavelength of 700 nm, based on squaraine/phenyl-C61-butyric-acid-methyl-ester bulk-heterojunction active material, was demonstrated.
Abstract: We demonstrate an organic photodetector showing high detectivity (34×1012 Hz05 cm/W) at a wavelength of 700 nm, based on squaraine/phenyl-C61-butyric-acid-methyl-ester bulk-heterojunction active material This result is achieved by suppressing the device dark currents while simultaneously preserving its external quantum efficiency, as high as 15% at 700 nm To this aim, a thin cross-linked film based on poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene-vinylene] is exploited to suppress electron injection from the device anode into the organic blend, thus reducing the dark currents by a factor of 30, to the extremely low value of 2 nA/cm2 Also, the detector bandwidth (∼1 MHz) is unaffected by the introduction of a blocking layer

100 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A molecularly engineered porphyrin dye is reported, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties.
Abstract: A dye that both maximizes electrolyte compatibility and improves light-harvesting properties has been designed for dye-sensitized solar cells. In cells based on the cobalt(II)/(III) redox mediator, use of the dye resulted in a power-conversion efficiency of 13%, revealing the great potential of porphyrin dyes for future solar cell applications.

3,940 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: An atomic ligand strategy is established that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films that shows up to 6% solar AM1.5G power-conversion efficiency.
Abstract: Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication.

1,435 citations

01 May 2014
TL;DR: In this paper, a room-temperature solution-processed ZnO/PbS quantum dot solar cells with a certified efficiency of 8.55% is presented.
Abstract: Fabricating low-temperature solution-processed solar cells with good power-conversion efficiency and stability in ambient conditions has proved challenging. The use of ligands that protect colloidal quantum dots from degradation in air and tune their energy levels is now shown to be a viable approach for the realization of spin-coated solar cells with very high efficiency. Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an inert-atmosphere processing environment or necessitate high-temperature processing1, all of which increase manufacturing complexities and costs. Simultaneously fulfilling the goals of high efficiency, low-temperature fabrication conditions and good atmospheric stability remains a major technical challenge, which may be addressed, as we demonstrate here, with the development of room-temperature solution-processed ZnO/PbS quantum dot solar cells. By engineering the band alignment of the quantum dot layers through the use of different ligand treatments, a certified efficiency of 8.55% has been reached. Furthermore, the performance of unencapsulated devices remains unchanged for over 150 days of storage in air. This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates.

1,321 citations

Journal ArticleDOI
TL;DR: This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates, which may be addressed with the development of room-temperature solution-processed ZnO/PbS quantum dot solar cells.
Abstract: Fabricating low-temperature solution-processed solar cells with good power-conversion efficiency and stability in ambient conditions has proved challenging. The use of ligands that protect colloidal quantum dots from degradation in air and tune their energy levels is now shown to be a viable approach for the realization of spin-coated solar cells with very high efficiency. Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an inert-atmosphere processing environment or necessitate high-temperature processing1, all of which increase manufacturing complexities and costs. Simultaneously fulfilling the goals of high efficiency, low-temperature fabrication conditions and good atmospheric stability remains a major technical challenge, which may be addressed, as we demonstrate here, with the development of room-temperature solution-processed ZnO/PbS quantum dot solar cells. By engineering the band alignment of the quantum dot layers through the use of different ligand treatments, a certified efficiency of 8.55% has been reached. Furthermore, the performance of unencapsulated devices remains unchanged for over 150 days of storage in air. This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates.

1,304 citations