scispace - formally typeset
Search or ask a question
Author

Madeline A. Lancaster

Bio: Madeline A. Lancaster is an academic researcher from Laboratory of Molecular Biology. The author has contributed to research in topics: Organoid & Biology. The author has an hindex of 29, co-authored 61 publications receiving 9243 citations. Previous affiliations of Madeline A. Lancaster include Medical Research Council & University of Cambridge.


Papers
More filters
Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: A human pluripotent stem cell-derived three-dimensional organoid culture system that develops various discrete, although interdependent, brain regions that include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes is developed.
Abstract: The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue

3,508 citations

Journal ArticleDOI
18 Jul 2014-Science
TL;DR: These studies illustrated two key events in structural organization during organogenesis: cell sorting out and spatially restricted lineage commitment, which are recapitulated in organoids, which self-assemble to form the cellular organization of the organ itself.
Abstract: Classical experiments performed half a century ago demonstrated the immense self-organizing capacity of vertebrate cells. Even after complete dissociation, cells can reaggregate and reconstruct the original architecture of an organ. More recently, this outstanding feature was used to rebuild organ parts or even complete organs from tissue or embryonic stem cells. Such stem cell-derived three-dimensional cultures are called organoids. Because organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they have the potential to model human development and disease. Furthermore, they have potential for drug testing and even future organ replacement strategies. Here, we summarize this rapidly evolving field and outline the potential of organoid technology for future biomedical research.

1,737 citations

Journal ArticleDOI
TL;DR: A recently established protocol for generating 3D brain tissue, so-called cerebral organoids, which closely mimics the endogenous developmental program and has the potential to model later events such as neuronal maturation and survival.
Abstract: Human brain development exhibits several unique aspects, such as increased complexity and expansion of neuronal output, that have proven difficult to study in model organisms As a result, in vitro approaches to model human brain development and disease are an intense area of research Here we describe a recently established protocol for generating 3D brain tissue, so-called cerebral organoids, which closely mimics the endogenous developmental program This method can easily be implemented in a standard tissue culture room and can give rise to developing cerebral cortex, ventral telencephalon, choroid plexus and retinal identities, among others, within 1-2 months This straightforward protocol can be applied to developmental studies, as well as to the study of a variety of human brain diseases Furthermore, as organoids can be maintained for more than 1 year in long-term culture, they also have the potential to model later events such as neuronal maturation and survival

1,052 citations

Journal ArticleDOI
TL;DR: A comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.
Abstract: Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

797 citations

Journal ArticleDOI
TL;DR: Microfilament-engineered cerebral organoids (enCORs) model the distinctive radial organization of the cerebral cortex and allow for the study of neuronal migration and demonstrate that combining 3D cell culture with bioengineering can increase reproducibility and improve tissue architecture.
Abstract: Three-dimensional cell culture models have either relied on the self-organizing properties of mammalian cells or used bioengineered constructs to arrange cells in an organ-like configuration. While self-organizing organoids excel at recapitulating early developmental events, bioengineered constructs reproducibly generate desired tissue architectures. Here, we combine these two approaches to reproducibly generate human forebrain tissue while maintaining its self-organizing capacity. We use poly(lactide-co-glycolide) copolymer (PLGA) fiber microfilaments as a floating scaffold to generate elongated embryoid bodies. Microfilament-engineered cerebral organoids (enCORs) display enhanced neuroectoderm formation and improved cortical development. Furthermore, reconstitution of the basement membrane leads to characteristic cortical tissue architecture, including formation of a polarized cortical plate and radial units. Thus, enCORs model the distinctive radial organization of the cerebral cortex and allow for the study of neuronal migration. Our data demonstrate that combining 3D cell culture with bioengineering can increase reproducibility and improve tissue architecture.

522 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: A microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology has great potential to advance the study of tissue development, organ physiology and disease etiology.
Abstract: Organ-level physiology is recapitulated in vitro by culturing cells in perfused, microfluidic devices.

2,339 citations

Journal ArticleDOI
16 Jun 2016-Cell
TL;DR: 3D culture technology allow embryonic and adult mammalian stem cells to exhibit their remarkable self-organizing properties, and the resulting organoids reflect key structural and functional properties of organs such as kidney, lung, gut, brain and retina, and hold promise to predict drug response in a personalized fashion.

1,810 citations

Journal ArticleDOI
18 Jul 2014-Science
TL;DR: These studies illustrated two key events in structural organization during organogenesis: cell sorting out and spatially restricted lineage commitment, which are recapitulated in organoids, which self-assemble to form the cellular organization of the organ itself.
Abstract: Classical experiments performed half a century ago demonstrated the immense self-organizing capacity of vertebrate cells. Even after complete dissociation, cells can reaggregate and reconstruct the original architecture of an organ. More recently, this outstanding feature was used to rebuild organ parts or even complete organs from tissue or embryonic stem cells. Such stem cell-derived three-dimensional cultures are called organoids. Because organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they have the potential to model human development and disease. Furthermore, they have potential for drug testing and even future organ replacement strategies. Here, we summarize this rapidly evolving field and outline the potential of organoid technology for future biomedical research.

1,737 citations