scispace - formally typeset
Search or ask a question
Author

Madhavi Z. Martin

Bio: Madhavi Z. Martin is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Laser-induced breakdown spectroscopy & Spectroscopy. The author has an hindex of 22, co-authored 61 publications receiving 1730 citations. Previous affiliations of Madhavi Z. Martin include University of California, Los Angeles & University of Tennessee.


Papers
More filters
Journal ArticleDOI
TL;DR: A comparative discussion of different soil carbon determination methods can be found in this article, where several different in situ analytic methods are being developed purportedly offering increased accuracy, precision and cost-effectiveness over traditional ex situ methods.
Abstract: Determining soil carbon (C) with high precision is an essential requisite for the success of the terrestrial C sequestration program. The informed choice of management practices for different terrestrial ecosystems rests upon accurately measuring the potential for C sequestration. Numerous methods are available for assessing soil C. Chemical analysis of field-collected samples using a dry combustion method is regarded as the standard method. However, conventional sampling of soil and their subsequent chemical analysis is expensive and time consuming. Furthermore, these methods are not sufficiently sensitive to identify small changes over time in response to alterations in management practices or changes in land use. Presently, several different in situ analytic methods are being developed purportedly offering increased accuracy, precision and cost-effectiveness over traditional ex situ methods. We consider that, at this stage, a comparative discussion of different soil C determination methods will improve...

177 citations

Journal ArticleDOI
TL;DR: The use of laser-induced breakdown spectroscopy (LIBS) for trace element determination in different matrices is reviewed in this article, where the main emphasis is on spatially resolved analysis of microbiological, plant and animal samples.

155 citations

Journal ArticleDOI
TL;DR: In this article, multivariate statistical analysis (MVA) techniques are coupled with laser-induced breakdown spectroscopy (LIBS) to identify preservative types (chromated copper arsenate, ammoniacal copper zinc or alkaline copper quat), and to predict elemental content in preservative-treated wood.

155 citations

Journal ArticleDOI
TL;DR: The LIBES technique was used on soils before and after acid washing, and the technique appears to be useful for the determination of both organic and inorganic soil carbon.
Abstract: Soils from various sites have been analyzed with the laser-induced breakdown spectroscopy (LIBS) technique for total elemental determination of carbon and nitrogen. Results from LIBS have been correlated to a standard laboratory-based technique (sample combustion), and strong linear correlations were obtained for determination of carbon concentrations. The LIBS technique was used on soils before and after acid washing, and the technique appears to be useful for the determination of both organic and inorganic soil carbon. The LIBS technique has the potential to be packaged into a field-deployable instrument.

103 citations

Journal ArticleDOI
TL;DR: Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications as discussed by the authors.

97 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: The main functions of rhizosphere microorganisms and how they impact on health and disease are reviewed and several strategies to redirect or reshape the rhizospheric microbiome in favor of microorganisms that are beneficial to plant growth and health are highlighted.
Abstract: Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health.

1,752 citations

Journal ArticleDOI
TL;DR: This review provides a “beginning‐to‐end” analysis of the recent advances reported in lignin valorisation, with particular emphasis on the improved understanding of lign in's biosynthesis and structure.
Abstract: Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.

1,390 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art of analytical LIBS is summarized, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools are discussed.
Abstract: The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis.

1,159 citations