scispace - formally typeset
Search or ask a question
Author

Madoka Yoda

Bio: Madoka Yoda is an academic researcher from Showa University. The author has contributed to research in topics: Adiponectin & Gene. The author has an hindex of 10, co-authored 10 publications receiving 5703 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy and that the replenishment of adiponECTin might provide a novel treatment modality for insulin resistance and type 2 diabetes.
Abstract: Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.

4,845 citations

Journal ArticleDOI
01 Feb 2002-Diabetes
TL;DR: Evidence of an association between frequent single nucleotide polymorphisms at positions 45 and 276 in the adiponectin gene and type 2 diabetes is presented, and the observation that adiponECTin improves insulin sensitivity in animal models is concluded.
Abstract: An adipocyte-derived peptide, adiponectin (also known as GBP28), is decreased in subjects with type 2 diabetes. Recent genome-wide scans have mapped a diabetes susceptibility locus to chromosome 3q27, where the adiponectin gene (APM1) is located. Herein, we present evidence of an association between frequent single nucleotide polymorphisms at positions 45 and 276 in the adiponectin gene and type 2 diabetes (P = 0.003 and P = 0.002, respectively). Subjects with the G/G genotype at position 45 or the G/G genotype at position 276 had a significantly increased risk of type 2 diabetes (odds ratio 1.70 [95% CI 1.09-2.65] and 2.16 [1.22-3.95], respectively) compared with those having the T/T genotype at positions 45 and 276, respectively. In addition, the subjects with the G/G genotype at position 276 had a higher insulin resistance index than those with the T/T genotype (1.61 +/- 0.05 vs. 1.19 +/- 0.12, P = 0.001). The G allele at position 276 was linearly associated with lower plasma adiponectin levels (G/G: 10.4 +/- 0.85 microg/ml, G/T: 13.7 +/- 0.87 microg/ml, T/T: 16.6 +/- 2.24 microg/ml, P = 0.01) in subjects with higher BMIs. Based on these findings together with the observation that adiponectin improves insulin sensitivity in animal models, we conclude that the adiponectin gene may be a susceptibility gene for type 2 diabetes.

718 citations

Journal ArticleDOI
18 Mar 1999-Gene
TL;DR: The exon-intron organization of this gene was very similar to that of obese gene, encoding leptin, and the chromosome mapping of this genes by fluorescence in situ hybridization (FISH) using a genomic DNA fragment as a probe was reported.

142 citations

Journal ArticleDOI
TL;DR: GBP28 may play a role in homeostasis, regulating body temperature and basal metabolic rate in response to changing environmental conditions, andSerum concentration and mRNA levels of GBP28 significantly increased in the mice exposed to cold.
Abstract: OBJECTIVE: To investigate whether the expression of the novel adipose tissue-specific protein GBP28 in adipose tissue and serum are altered in mice under a variety of conditions. DESIGN: Mice were fed a high-fat diet for 4 weeks, fasted for 48 h or exposed at 4°C. SUBJECTS: C57BL/6J mouse, male, 4–6 weeks old. MEASUREMENTS: GBP28 mRNA, GBP28 protein, blood glucose, insulin and fad pad weight of the mice. RESULTS: We first confirmed that the mouse has GBP28 and its characteristics are the same as human GBP28. Serum concentration and mRNA levels of GBP28 significantly increased in the mice exposed to cold. CONCLUSION: GBP28 may play a role in homeostasis, regulating body temperature and basal metabolic rate in response to changing environmental conditions.

45 citations

Journal ArticleDOI
TL;DR: The transcriptional activity of the flanking region of the GBP28 gene was examined by the transient transfection of promoter-luciferase reporter constructs into 3T3 adipocytes and electrophoretic mobility shift assay, which revealed the existence of a protein which binds to the 5'-flanking region in nuclear extracts from human adipose tissue, but not innuclear extracts from mouse liver.
Abstract: We have previously reported the isolation of human gelatin-binding protein 28 (GBP28) gene which is specifically expressed in adipose tissue. The transcriptional activity of the flanking region of the GBP28 gene was examined by the transient transfection of promoter-luciferase reporter constructs into 3T3 adipocytes and electrophoretic mobility shift assay. This revealed the existence of a protein which binds to the 5'-flanking region of the GBP28 gene in nuclear extracts from human adipose tissue, but not in nuclear extracts from mouse liver. The C/EBP sites contained in this region are thought to take part in the regulation of GBP28 gene expression.

43 citations


Cited by
More filters
Journal ArticleDOI
13 Dec 2001-Nature
TL;DR: The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide, and tissues such as muscle, fat and liver become less responsive or resistant to insulin.
Abstract: The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

4,935 citations

Journal ArticleDOI
TL;DR: It is suggested that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Abstract: Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.

4,752 citations

Journal ArticleDOI
TL;DR: It is shown that phosphorylation and activation of the 5′-AMP-activated protein kinase (AMPK) are stimulated with globular and full-length Ad in skeletal muscle and only with full- lengths Ad in the liver, indicating that stimulation of glucose utilization and fatty-acid oxidation by Ad occurs through activation of AMPK.
Abstract: Adiponectin (Ad) is a hormone secreted by adipocytes that regulates energy homeostasis and glucose and lipid metabolism. However, the signaling pathways that mediate the metabolic effects of Ad remain poorly identified. Here we show that phosphorylation and activation of the 5'-AMP-activated protein kinase (AMPK) are stimulated with globular and full-length Ad in skeletal muscle and only with full-length Ad in the liver. In parallel with its activation of AMPK, Ad stimulates phosphorylation of acetyl coenzyme A carboxylase (ACC), fatty-acid oxidation, glucose uptake and lactate production in myocytes, phosphorylation of ACC and reduction of molecules involved in gluconeogenesis in the liver, and reduction of glucose levels in vivo. Blocking AMPK activation by dominant-negative mutant inhibits each of these effects, indicating that stimulation of glucose utilization and fatty-acid oxidation by Ad occurs through activation of AMPK. Our data may provide a novel paradigm that an adipocyte-derived antidiabetic hormone, Ad, activates AMPK, thereby directly regulating glucose metabolism and insulin sensitivity in vitro and in vivo.

4,298 citations

Journal ArticleDOI
TL;DR: It is suggested that TLR4 is a molecular link among nutrition, lipids, and inflammation and that the innate immune system participates in the regulation of energy balance and insulin resistance in response to changes in the nutritional environment.
Abstract: TLR4 is the receptor for LPS and plays a critical role in innate immunity. Stimulation of TLR4 activates proinflammatory pathways and induces cytokine expression in a variety of cell types. Inflammatory pathways are activated in tissues of obese animals and humans and play an important role in obesity-associated insulin resistance. Here we show that nutritional fatty acids, whose circulating levels are often increased in obesity, activate TLR4 signaling in adipocytes and macrophages and that the capacity of fatty acids to induce inflammatory signaling in adipose cells or tissue and macrophages is blunted in the absence of TLR4. Moreover, mice lacking TLR4 are substantially protected from the ability of systemic lipid infusion to (a) suppress insulin signaling in muscle and (b) reduce insulin-mediated changes in systemic glucose metabolism. Finally, female C57BL/6 mice lacking TLR4 have increased obesity but are partially protected against high fat diet-induced insulin resistance, possibly due to reduced inflammatory gene expression in liver and fat. Taken together, these data suggest that TLR4 is a molecular link among nutrition, lipids, and inflammation and that the innate immune system participates in the regulation of energy balance and insulin resistance in response to changes in the nutritional environment.

3,301 citations

Journal ArticleDOI
TL;DR: These proteins commonly known as adipokines are central to the dynamic control of energy metabolism, communicating the nutrient status of the organism with the tissues responsible for controlling both energy intake and expenditure as well as insulin sensitivity.

3,174 citations