scispace - formally typeset
Search or ask a question
Author

Magali Cruel

Bio: Magali Cruel is an academic researcher. The author has contributed to research in topics: Bone cell & Bone tissue. The author has an hindex of 2, co-authored 2 publications receiving 91 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on state-of-the-art and the current advances in the development of 3D culture systems for bone biology research, and details main characteristics and challenges associated with its three main components, that is, scaffold, cells, and perfusion bioreactor systems.
Abstract: Most of our knowledge of bone cell physiology is derived from experiments carried out in vitro on polystyrene substrates However, these traditional monolayer cell cultures do not reproduce the complex and dynamic 3-dimensional (3D) environment experienced by cells in vivo Thus, there is a growing interest in the use of 3D culture systems as tools for understanding bone biology These in vitro engineered systems, less complex than in vivo models, should ultimately recapitulate and control the main biophysical, biochemical and biomechanical cues that define the in vivo bone environment, while allowing their monitoring This review focuses on state of the art and the current advances in the development of 3D culture systems for bone biology research It describes more specifically advantages related to the use of such systems, and details main characteristics and challenges associated with its three main components, ie scaffold, cells and perfusion bioreactor systems Finally, future challenges for non-invasive imaging technologies are addressed

80 citations

Journal ArticleDOI
TL;DR: A "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading is provided, which will be a tool to analyse bone cell functions in vivo and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.
Abstract: An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a “proof-of-concept” for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval.

857 citations

Journal ArticleDOI
TL;DR: This Review summarizes the preparation and compositions of polymer fibers, as well as their characteristics, and affords constructive suggestions for the development of polymer fiber scaffolds in bone and cartilage tissue engineering.

201 citations

Journal ArticleDOI
TL;DR: The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds and the potential applications, challenges, and future trends are discussed in detail.

187 citations

Journal ArticleDOI
TL;DR: 3D tissue-engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression.
Abstract: In the tissue engineering (TE) paradigm, engineering and life sciences tools are combined to develop bioartificial substitutes for organs and tissues, which can in turn be applied in regenerative medicine, pharmaceutical, diagnostic, and basic research to elucidate fundamental aspects of cell functions in vivo or to identify mechanisms involved in aging processes and disease onset and progression. The complex three-dimensional (3D) microenvironment in which cells are organized in vivo allows the interaction between different cell types and between cells and the extracellular matrix (ECM), the composition of which varies as a function of the tissue, the degree of maturation and health conditions. In this context, 3D in vitro models can more realistically reproduce a tissue or organ than two-dimensional (2D) models. Moreover, they can overcome the limitations of animal models and reduce the need for in vivo tests, according to the "3Rs" guiding principles for a more ethical research. The design of 3D engineered tissue models is currently in its development stage, showing high potential in overcoming the limitations of already available models. However, many issues are still opened, concerning the identification of the optimal scaffold-forming materials, cell source and biofabrication technology, and the best cell culture conditions (biochemical and physical cues) to finely replicate the native tissue and the surrounding environment. In the near future, 3D tissue engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression. In this review, the application of TE principles to the design of in vitro 3D models will be surveyed, with a focus on the strengths and weaknesses of this emerging approach. In addition, a brief overview on the development of in vitro models of healthy and pathological bone, heart, pancreas and liver will be presented.

157 citations

Journal ArticleDOI
TL;DR: F Fluorochrome labelling, micro-computed tomography and histological staining analyses indicated that the osteo-regenerator with two holes perforating the femur promoted significantly greater bone regeneration compared with the osteospecialist with a periosteum incision.
Abstract: The drawbacks of traditional bone-defect treatments have prompted the exploration of bone tissue engineering. This study aimed to explore suitable β-tricalcium phosphate (β-TCP) granules for bone regeneration and identify an efficient method to establish β-TCP-based osteo-regenerators. β-TCP granules with diameters of 1 mm and 1–2.5 mm were evaluated in vitro. The β-TCP granules with superior osteogenic properties were used to establish in vivo bioreactors, referred to as osteo-regenerators, which were fabricated using two different methods. Improved proliferation of bone mesenchymal stem cells (BMSCs), glucose consumption and ALP activity were observed for 1–2.5 mm β-TCP compared with 1-mm granules (P < 0.05). In addition, BMSCs incubated with 1–2.5 mm β-TCP expressed significantly higher levels of the genes for runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 and the osteogenesis-related proteins alkaline phosphatase, collagen type-1 and runt-related transcription factor-2 compared with BMSCs incubated with 1 mm β-TCP (P < 0.05). Fluorochrome labelling, micro-computed tomography and histological staining analyses indicated that the osteo-regenerator with two holes perforating the femur promoted significantly greater bone regeneration compared with the osteo-regenerator with a periosteum incision (P < 0.05). This study provides an alternative to biofunctionalized bioreactors that exhibits improved osteogenesis.

104 citations