scispace - formally typeset
Search or ask a question
Author

Magali Ferrandon

Other affiliations: Northwestern University
Bio: Magali Ferrandon is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Catalysis & Copper–chlorine cycle. The author has an hindex of 34, co-authored 60 publications receiving 3324 citations. Previous affiliations of Magali Ferrandon include Northwestern University.


Papers
More filters
Journal ArticleDOI
TL;DR: The data indicate that better control of the metal-catalyzed transformations of the polymer into new graphitized carbon forms in the heat-treatment step will allow for even further improvement of this class of catalysts.
Abstract: In this report, we present the systematic preparation of active and durable non-precious metal catalysts (NPMCs) for the oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) based on the heat treatment of polyaniline/metal/carbon precursors. Variation of the synthesis steps, heat-treatment temperature, metal loading, and the metal type in the synthesis leads to markedly different catalyst activity, speciation, and morphology. Microscopy studies demonstrate notable differences in the carbon structure as a function of these variables. Balancing the need to increase the catalyst’s degree of graphitization through heat treatment versus the excessive loss of surface area that occurs at higher temperatures is a key to preparing an active catalyst. XPS and XAFS spectra are consistent with the presence of Me–Nx structures in both the Co and Fe versions of the catalyst, which are often proposed to be active sites. The average speciation and coordination environment of nitrogen and metal, however, depends greatly on the choice of Co or Fe. Taken together, the data indicate that better control of the metal-catalyzed transformations of the polymer into new graphitized carbon forms in the heat-treatment step will allow for even further improvement of this class of catalysts.

509 citations

Journal ArticleDOI
TL;DR: In this article, an oxygen reduction reaction (ORR) catalyst obtained via a heat treatment of polyaniline, iron, and carbon black was characterized at several critical synthesis stages and following heat treatment at various temperatures.
Abstract: This paper summarizes a XANES, XPS, XRD, and Mo study of an oxygen reduction reaction (ORR) catalyst obtained via a heat treatment of polyaniline, iron, and carbon black. The catalyst was characterized at several critical synthesis stages and following heat treatment at various temperatures. The effect of sulfur during the synthesis was also investigated. XANES linear combination fitting (XANES-LCF) was used to determine the speciation of iron using 16 iron standards. The highest ORR activity was measured with a catalyst heat-treated at 900 °C, with the largest Fe−Nx content, as determined by the XANES-LCF, also characterized by the highest microporosity. An absence or a reduction in the amount of a sulfur-based oxidant in the aniline polymerization was found to lead to an increase in the amount of iron carbide formed during the heat treatment and a decrease in the number of Fe−N4 centers, thus attesting to an indirect beneficial role of sulfur in the catalyst synthesis. Using principal component analysis (PCA), a good correlation was found between the ORR activity and the presence of Fe−Nx structures.

359 citations

Journal ArticleDOI
TL;DR: Characterization by multiple techniques shows that all Fe–N4 sites formed via this approach are gas-phase and electrochemically accessible and have an active site density of 1.92 × 1020 sites per gram with 100% site utilization.
Abstract: Replacing scarce and expensive platinum (Pt) with metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has largely been impeded by the low oxygen reduction reaction activity of M–N–C due to low active site density and site utilization. Herein, we overcome these limits by implementing chemical vapour deposition to synthesize Fe–N–C by flowing iron chloride vapour over a Zn–N–C substrate at 750 °C, leading to high-temperature trans-metalation of Zn–N4 sites into Fe–N4 sites. Characterization by multiple techniques shows that all Fe–N4 sites formed via this approach are gas-phase and electrochemically accessible. As a result, the Fe–N–C catalyst has an active site density of 1.92 × 1020 sites per gram with 100% site utilization. This catalyst delivers an unprecedented oxygen reduction reaction activity of 33 mA cm−2 at 0.90 V (iR-corrected; i, current; R, resistance) in a H2–O2 proton exchange membrane fuel cell at 1.0 bar and 80 °C. Replacing platinum with metal–nitrogen–carbon catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has been impeded by low activity. These limitations have now been overcome by the trans-metalation of Zn–N4 sites into Fe–N4 sites.

264 citations

Journal ArticleDOI
TL;DR: Energy-rich polyethylene (PE) macromolecules are catalytically transformed into value-added products by hydrogenolysis using well-dispersed Pt nanoparticles (NPs) supported on SrTiO3 perovskite nanocuboids by atomic layer deposition.
Abstract: Our civilization relies on synthetic polymers for all aspects of modern life; yet, inefficient recycling and extremely slow environmental degradation of plastics are causing increasing concern abou...

219 citations

Journal ArticleDOI
TL;DR: A non-precious metal catalyst for oxygen reduction in acid media, enriched in graphene sheets/bubbles during a high-temperature synthesis step, has been developed from an Fe precursor and in situ polymerized polyaniline, supported on multi-walled carbon nanotubes.

187 citations


Cited by
More filters
Journal ArticleDOI
22 Apr 2011-Science
TL;DR: A family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Abstract: The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).

3,464 citations

Journal Article
TL;DR: In this article, a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Abstract: Fuel cell catalysts synthesized from abundant metals approach the performance and durability of platinum at lower cost. The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non–precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).

2,974 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations

Journal ArticleDOI
TL;DR: The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes, and the design and optimization of air-electrode structure are outlined.
Abstract: Because of the remarkably high theoretical energy output, metal–air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal–air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal–air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic–organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal–air batteries (219 references).

2,211 citations

Journal ArticleDOI
TL;DR: The most recent advances in the development of Pt-based and Pt-free materials in the field of fuel cell ORR catalysis are reviewed to provide insights into the remaining challenges and directions for future perspectives and research.
Abstract: Developing highly efficient catalysts for the oxygen reduction reaction (ORR) is key to the fabrication of commercially viable fuel cell devices and metal–air batteries for future energy applications. Herein, we review the most recent advances in the development of Pt-based and Pt-free materials in the field of fuel cell ORR catalysis. This review covers catalyst material selection, design, synthesis, and characterization, as well as the theoretical understanding of the catalysis process and mechanisms. The integration of these catalysts into fuel cell operations and the resulting performance/durability are also discussed. Finally, we provide insights into the remaining challenges and directions for future perspectives and research.

1,752 citations