scispace - formally typeset
Search or ask a question
Author

Magali Siaut

Other affiliations: Stazione Zoologica Anton Dohrn
Bio: Magali Siaut is an academic researcher from Commissariat à l'énergie atomique et aux énergies alternatives. The author has contributed to research in topics: Transcriptional regulation & Thalassiosira pseudonana. The author has an hindex of 8, co-authored 10 publications receiving 2569 citations. Previous affiliations of Magali Siaut include Stazione Zoologica Anton Dohrn.

Papers
More filters
Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms, and documents the presence of hundreds of genes from bacteria, likely to provide novel possibilities for metabolite management and for perception of environmental signals.
Abstract: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.

1,500 citations

Journal ArticleDOI
TL;DR: The existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions is suggested and the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content is highlighted.
Abstract: When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields.

697 citations

Journal ArticleDOI
30 Dec 2007-Gene
TL;DR: The identification of several reference genes that can be used as internal standards for gene expression studies by quantitative real-time PCR (qRT-PCR) in P. tricornutum cells grown over a diel cycle are reported.

324 citations

Journal ArticleDOI
TL;DR: The basic cellular systems controlling cell signaling, gene expression, cytoskeletal structures, and response to stress have been cataloged in an attempt to obtain a global view of the molecular foundations that sustain such an ecologically successful group of organisms.
Abstract: Diatoms are unicellular brown algae that likely arose from the endocytobiosis of a red alga into a single-celled heterotroph and that constitute an algal class of major importance in phytoplankton communities around the globe. The first whole-genome sequence from a diatom species, Thalassiosira pseudonana Hasle et Heimdal, was recently reported, and features that are central to diatom physiology and ecology, such as silicon and nitrogen metabolism, iron uptake, and carbon concentration mechanisms, were described. Following this initial study, the basic cellular systems controlling cell signaling, gene expression, cytoskeletal structures, and response to stress have been cataloged in an attempt to obtain a global view of the molecular foundations that sustain such an ecologically successful group of organisms. Comparative analysis with several microbial, plant, and metazoan complete genome sequences allowed the identification of putative membrane receptors, signaling proteins, and other components of central interest to diatom ecophysiology and evolution. Thalassiosira pseudonana likely perceives light through a novel phytochrome and several cryptochrome photoreceptors; it may lack the conserved RHO small-GTPase subfamily of cell-polarity regulators, despite undergoing polarized cell-wall synthesis; and it possesses an unusually large number of heat-shock transcription factors, which may indicate the central importance of transcriptional responses to environmental stress. The availability of the complete gene repertoire will permit a detailed biochemical and genetic analysis of how diatoms prosper in aquatic environments and will contribute to the understanding of eukaryotic evolution.

89 citations

Journal ArticleDOI
TL;DR: The data indicate that C17 is a novel specific subunit of PolIII which participates together with C34 in the recruitment of Pol III by the preinitiation complex.
Abstract: There is limited information on how eukaryotic RNA polymerases (Pol) recognize their cognate preinitiation complex. We have characterized a polypeptide copurifying with yeast Pol III. This protein, C17, was found to be homologous to a mammalian protein described as a hormone receptor. Deletion of the corresponding gene, RPC17, was lethal and its regulated extinction caused a selective defect in transcription of class III genes in vivo. Two-hybrid and coimmunoprecipitation experiments indicated that C17 interacts with two Pol III subunits, one of which, C31, is important for the initiation reaction. C17 also interacted with TFIIIB70, the TFIIB-related component of TFIIIB. The interaction domain was found to be in the N-terminal, TFIIB-like half of TFIIIB70, downstream of the zinc ribbon and first imperfect repeat. Although Pol II similarly interacts with TFIIB, it is notable that C17 has no similarity to any Pol II subunit. The data indicate that C17 is a novel specific subunit of Pol III which participates together with C34 in the recruitment of Pol III by the preinitiation complex.

85 citations


Cited by
More filters
Journal ArticleDOI
13 Aug 2010-Science
TL;DR: Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.
Abstract: Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing for arable land. Worldwide, research and demonstration programs are being carried out to develop the technology needed to expand algal lipid production from a craft to a major industrial process. Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.

1,712 citations

Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms, and documents the presence of hundreds of genes from bacteria, likely to provide novel possibilities for metabolite management and for perception of environmental signals.
Abstract: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.

1,500 citations

Journal ArticleDOI
TL;DR: The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.
Abstract: Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

1,125 citations

Journal ArticleDOI
TL;DR: Potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes are focused on.
Abstract: There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.

1,079 citations

Journal ArticleDOI
Patrick J. Keeling1, Patrick J. Keeling2, Fabien Burki2, Heather M. Wilcox3, Bassem Allam4, Eric E. Allen5, Linda A. Amaral-Zettler6, Linda A. Amaral-Zettler7, E. Virginia Armbrust8, John M. Archibald1, John M. Archibald9, Arvind K. Bharti10, Callum J. Bell10, Bank Beszteri11, Kay D. Bidle12, Connor Cameron10, Lisa Campbell13, David A. Caron14, Rose Ann Cattolico8, Jackie L. Collier4, Kathryn J. Coyne15, Simon K. Davy16, Phillipe Deschamps17, Sonya T. Dyhrman18, Bente Edvardsen19, Ruth D. Gates20, Christopher J. Gobler4, Spencer J. Greenwood21, Stephanie Guida10, Jennifer L. Jacobi10, Kjetill S. Jakobsen19, Erick R. James2, Bethany D. Jenkins22, Uwe John11, Matthew D. Johnson23, Andrew R. Juhl18, Anja Kamp24, Anja Kamp25, Laura A. Katz26, Ronald P. Kiene27, Alexander Kudryavtsev28, Alexander Kudryavtsev29, Brian S. Leander2, Senjie Lin30, Connie Lovejoy31, Denis H. Lynn32, Denis H. Lynn2, Adrian Marchetti33, George B. McManus30, Aurora M. Nedelcu34, Susanne Menden-Deuer22, Cristina Miceli35, Thomas Mock36, Marina Montresor37, Mary Ann Moran38, Shauna A. Murray39, Govind Nadathur40, Satoshi Nagai, Peter B. Ngam10, Brian Palenik5, Jan Pawlowski28, Giulio Petroni41, Gwenael Piganeau42, Matthew C. Posewitz43, Karin Rengefors44, Giovanna Romano37, Mary E. Rumpho30, Tatiana A. Rynearson22, Kelly B. Schilling10, Declan C. Schroeder, Alastair G. B. Simpson9, Alastair G. B. Simpson1, Claudio H. Slamovits1, Claudio H. Slamovits9, David Roy Smith45, G. Jason Smith46, Sarah R. Smith5, Heidi M. Sosik23, Peter Stief24, Edward C. Theriot47, Scott N. Twary48, Pooja E. Umale10, Daniel Vaulot49, Boris Wawrik50, Glen L. Wheeler51, William H. Wilson52, Yan Xu53, Adriana Zingone37, Alexandra Z. Worden1, Alexandra Z. Worden3 
Canadian Institute for Advanced Research1, University of British Columbia2, Monterey Bay Aquarium Research Institute3, Stony Brook University4, University of California, San Diego5, Marine Biological Laboratory6, Brown University7, University of Washington8, Dalhousie University9, National Center for Genome Resources10, Alfred Wegener Institute for Polar and Marine Research11, Rutgers University12, Texas A&M University13, University of Southern California14, University of Delaware15, Victoria University of Wellington16, University of Paris-Sud17, Columbia University18, University of Oslo19, University of Hawaii at Manoa20, University of Prince Edward Island21, University of Rhode Island22, Woods Hole Oceanographic Institution23, Max Planck Society24, Jacobs University Bremen25, Smith College26, University of South Alabama27, University of Geneva28, Saint Petersburg State University29, University of Connecticut30, Laval University31, University of Guelph32, University of North Carolina at Chapel Hill33, University of New Brunswick34, University of Camerino35, University of East Anglia36, Stazione Zoologica Anton Dohrn37, University of Georgia38, University of Technology, Sydney39, University of Puerto Rico40, University of Pisa41, Centre national de la recherche scientifique42, Colorado School of Mines43, Lund University44, University of Western Ontario45, California State University46, University of Texas at Austin47, Los Alamos National Laboratory48, Pierre-and-Marie-Curie University49, University of Oklahoma50, Plymouth Marine Laboratory51, Bigelow Laboratory For Ocean Sciences52, Princeton University53
TL;DR: In this paper, the authors describe a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans and their biology, evolution, and ecology.
Abstract: Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans.

852 citations