scispace - formally typeset
Search or ask a question
Author

Magali Théveniau-Ruissy

Bio: Magali Théveniau-Ruissy is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Connexin & Heart development. The author has an hindex of 19, co-authored 30 publications receiving 1482 citations. Previous affiliations of Magali Théveniau-Ruissy include French Institute of Health and Medical Research & Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
TL;DR: During the early stages of mouse heart maturation, between 8.5 days post coitum (dpc), when the first rhythmic contractions appear, and 14.5 dpc, there is clearly a temporary and asymmetrical regionalization of the Cx40 gene expression that is superimposed on the functional regionalization.
Abstract: The synchronized contraction of myocytes in cardiac muscle requires the structural and functional integrity of the gap junctions present between these cells. Gap junctions are clusters of intercellular channels formed by transmembrane proteins of the connexin (Cx) family. Products of several Cx genes have been identified in the mammalian heart (eg, Cx45, Cx43, Cx40, and Cx37), and their expression was shown to be regulated during the development of the myocardium. Cx43, Cx40, and Cx45 are components of myocyte gap junctions, and it has also been demonstrated that Cx40 was expressed in the endothelial cells of the blood vessels. The aim of the present work was to investigate the expression and regulation of Cx40, Cx43, and Cx37 during the early stages of mouse heart maturation, between 8.5 days post coitum (dpc), when the first rhythmic contractions appear, and 14.5 dpc, when the four-chambered heart is almost completed. At 8.5 dpc, only the reverse-transcriptase polymerase chain reaction technique has allowed identification of Cx43, Cx40, and Cx37 gene transcripts in mouse heart, suggesting a very low activity level of these genes. From 9.5 dpc, all three transcripts became detectable in whole-mount in situ-hybridized embryos, and the most obvious result was the labeling of the vascular system with Cx40 and Cx37 anti-sense riboprobes. Cx40 and Cx37 gene products (transcript and/or protein) were demonstrated to be expressed in the vascular endothelial cells at all stages examined. By contrast, only Cx37 gene products were found in the endothelial cells of the endocardium. In heart, Cx37 was expressed exclusively in these cells, which rules out any direct involvement of this Cx in the propagation of electrical activity between myocytes and the synchronization of contractions. Between 9.5 and 11.5 dpc, Cx40 gene activation in myocytes was demonstrated to proceed according to a caudorostral gradient involving first the primitive atrium and the common ventricular chamber (9.5 dpc) and then the right ventricle (11.5 dpc). During this period of heart morphogenesis, there is clearly a temporary and asymmetrical regionalization of the Cx40 gene expression that is superimposed on the functional regionalization. In addition, comparison of Cx40 and Cx43 distribution at the above developmental stages has shown that these Cxs have overlapping (left ventricle) or complementary (atrial tissue and right ventricle) expression patterns.

230 citations

Journal ArticleDOI
TL;DR: It is demonstrated that CX40 mRNA is regulated throughout development, as are other heart connexin transcripts, i.e., CX37, CX43, and CX45, with a decreasing abundance as development proceeds, whereas a more dynamic pattern is observed in the ventricles.
Abstract: In adult mouse heart, CX40 is expressed in the atria and the proximal part of the ventricular conduction system (the His bundle and the upper parts of the bundle branches). This cardiac tissue is specialized in the conduction of the electrical impulse. CX40 is the only mouse connexin known to be expressed in these parts of the adult conductive tissue and is thus considered as a marker of the conduction system. In the present report, we investigated CX40 expression and distribution during mouse heart development. We first demonstrate that CX40 mRNA is regulated throughout development, as are other heart connexin transcripts, i.e., CX37, CX43, and CX45, with a decreasing abundance as development proceeds. We also show that the CX40 transcript and protein are similarly regulated, CX40 being expressed as two different phosphorylated and un-phosphorylated forms of 41 and 40 kDa, respectively. Surprisingly, distribution studies demonstrated that CX40 is widely expressed in 11 days post-coitum (dpc) embryonic heart, where it is detected in both the atria and ventricle primordia. As development proceeds, the CX40 distribution pattern in the atria is maintained, whereas a more dynamic pattern is observed in the ventricles. From 14 dpc onwards, as the adult ventricular conduction system differentiates, CX40 decreases in the trabecular network and it is preferentially distributed in the ventricular conduction system. CX40 is thus the marker of the early differentiating conduction system. It is hypothesized that the conduction system is present in unorganized “embryonic” form at 11 dpc and trans-differentiates by 14 dpc into the adult conduction system. © 1995 wiley-Liss, Inc.

168 citations

Journal ArticleDOI
TL;DR: Cx45 gene is the first Cx gene so far demonstrated to be activated in heart at the stage of the first contractions, and the coordination of myocytes during the slow peristaltic contractions that occur at this stage would thus appear to be controlled by the Cx45 channels.
Abstract: The electrical activity in heart is generated in the sinoatrial node and then propagates to the atrial and ventricular tissues. The gap junction channels that couple the myocytes are responsible for this propagation process. The gap junction channels are dodecamers of transmembrane proteins of the connexin (Cx) family. Three members of this family have been demonstrated to be synthesized in the cardiomyocytes: Cx40, Cx43, and Cx45. In addition, each of them has been shown to form channels with unique and specific electrophysiological properties. Understanding the conduction phenomenon requires detailed knowledge of the spatiotemporal expression pattern of these Cxs in heart. The expression patterns of Cx40 and Cx43 have been previously described in the adult heart and during its development. Here we report the expression of Cx45 gene products in mouse heart from the stage of the first contractions (8.5 days postcoitum [dpc]) to the adult stage. The Cx45 gene transcript was demonstrated by reverse transcriptase-polymerase chain reaction experiments to be present in heart at all stages investigated. Between 8.5 and 10.5 dpc it was shown by in situ hybridization to be expressed in low amounts in all cardiac compartments (including the inflow and outflow tracts and the atrioventricular canal) and then to be downregulated from 11 to 12 dpc onward. At subsequent fetal stages, the transcript was weakly detected in the ventricles, with the most distinct expression in the outflow tract. Cx45 protein was demonstrated by immunofluorescence microscopy to be expressed in the myocytes of young embryonic hearts (8.5 to 9.5 dpc). However, beyond 10.5 dpc the protein was no longer detected with this technique in the embryonic, fetal, or neonatal working myocardium, although it could be shown by immunoblotting that the protein was still synthesized in neonatal heart. In the major part of adult heart, Cx45 was undetectable. It was, however, clearly seen in the anterior regions of the interventricular septum and in trace amounts in some small foci dispersed in the ventricular free walls. Cx45 gene is the first Cx gene so far demonstrated to be activated in heart at the stage of the first contractions. The coordination of myocytes during the slow peristaltic contractions that occur at this stage would thus appear to be controlled by the Cx45 channels.

157 citations

Journal ArticleDOI
TL;DR: The results implicate second heart field development in coronary artery patterning and provide new insights into the association between conotruncal defects and coronary artery anomalies.
Abstract: TBX1 , encoding a T-box containing transcription factor, is the major candidate gene for del22q11.2 or DiGeorge syndrome, characterized by craniofacial and cardiovascular defects including tetralogy of Fallot and common arterial trunk. Mice lacking Tbx1 have severe defects in the development of pharyngeal derivatives including cardiac progenitor cells of the second heart field that contribute to the arterial pole of the heart. The outflow tract of Tbx1 mutant embryos is short and narrow resulting in common arterial trunk. Here we show by a series of genetic crosses using transgene markers of second heart field derived myocardium and coronary endothelial cells that a subdomain of myocardium normally observed at the base of the pulmonary trunk is reduced and malpositioned in Tbx1 mutant hearts. This defect is associated with anomalous coronary artery patterning. Both right and left coronary ostia form predominantly at the right/ventral sinus in mutant hearts, proximal coronary arteries coursing across the normally coronary free ventral region of the heart. We have identified Semaphorin3c as a Tbx1 -dependent gene expressed in subpulmonary myocardium. Our results implicate second heart field development in coronary artery patterning and provide new insights into the association between conotruncal defects and coronary artery anomalies.

137 citations

Journal ArticleDOI
TL;DR: Tbx1 is required for inflow as well as OFT morphogenesis by regulating the segregation and deployment of progenitor cells in the posterior SHF, and his results provide new insights into the pathogenesis of congenital heart defects and 22q11.2 deletion syndrome phenotypes.
Abstract: Rationale:Cardiac progenitor cells from the second heart field (SHF) contribute to rapid growth of the embryonic heart, giving rise to right ventricular and outflow tract (OFT) myocardium at the arterial pole of the heart, and atrial myocardium at the venous pole. Recent clonal analysis and cell-tracing experiments indicate that a common progenitor pool in the posterior region of the SHF gives rise to both OFT and atrial myocytes. The mechanisms regulating deployment of this progenitor pool remain unknown. Objective:To evaluate the role of TBX1, the major gene implicated in congenital heart defects in 22q11.2 deletion syndrome patients, in posterior SHF development. Methods and Results:Using transcriptome analysis, genetic tracing, and fluorescent dye-labeling experiments, we show that Tbx1-dependent OFT myocardium originates in Hox-expressing cells in the posterior SHF. In Tbx1 null embryos, OFT progenitor cells fail to segregate from this progenitor cell pool, leading to failure to expand the dorsal per...

105 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The NFAT family of transcription factors encompasses five proteins evolutionarily related to the Rel/NF B family, and it is clear that NFAT activates transcription of a large number of genes during an effective immune response.
Abstract: The NFAT family of transcription factors encompasses five proteins evolutionarily related to the Rel/NF B family (Chytil and Verdine 1996; Graef et al. 2001b). The primordial family member is NFAT5, the only NFATrelated protein represented in the Drosophila genome. NFAT5 is identical to TonEBP (tonicity element binding protein), a transcription factor crucial for cellular responses to hypertonic stress (Lopez-Rodriguez et al. 1999; Miyakawa et al. 1999). We focus here on the remaining four NFAT proteins (NFAT1–NFAT4, also known as NFATc1–c4; see Table 1), referring to them collectively as NFAT. The distinguishing feature of NFAT is its regulation by Ca and the Ca/calmodulin-dependent serine phosphatase calcineurin. NFAT proteins are phosphorylated and reside in the cytoplasm in resting cells; upon stimulation, they are dephosphorylated by calcineurin, translocate to the nucleus, and become transcriptionally active, thus providing a direct link between intracellular Ca signaling and gene expression. NFAT activity is further modulated by additional inputs from diverse signaling pathways, which affect NFAT kinases and nuclear partner proteins. In the first part of this review, we describe the influence of these multiple inputs on the nuclear–cytoplasmic distribution and transcriptional function of NFAT. Recent structural data emphasize the remarkable versatility of NFAT binding to DNA. At composite NFAT:AP-1 elements found in the regulatory regions of many target genes, NFAT proteins bind cooperatively with an unrelated transcription factor, AP-1 (Fos–Jun; Chen et al. 1998). At DNA elements that resemble NF B sites, NFAT proteins bind DNA as dimers (Giffin et al. 2003; Jin et al. 2003). In the second section of this review, we describe these two modes of DNA binding by NFAT. NFAT also acts synergistically with transcription factors other than Fos and Jun, but the structural basis for synergy remains unknown. Drawing on published structures, we discuss the potential cooperation of NFAT with other classes of DNA-binding proteins. It is clear that NFAT activates transcription of a large number of genes during an effective immune response (Rao et al. 1997; Kiani et al. 2000; Serfling et al. 2000; Macian et al. 2001). In the third part of this review, we present information obtained from these studies, highlighting experimental and bioinformatics approaches to identifying NFAT target genes. We discuss the finding that NFAT and NFAT–Fos–Jun complexes activate distinct subsets of target genes in lymphocytes (Macian et al. 2002). We also describe a novel aspect of gene regulation by NFAT, in which this transcription factor participates in an early phase of chromatin remodeling that occurs at specific genetic loci in differentiating T cells (Avni et al. 2002). There is evidence that NFAT regulates cell differentiation programs in cell types other than immune cells (Crabtree and Olson 2002; Horsley and Pavlath 2002; Graef et al. 2003; Hill-Eubanks et al. 2003). In the last section of this review, we select three differentiation programs—fiber-type specification in differentiated skeletal muscle, cardiac valve development, and osteoclast differentiation—for detailed consideration. We evaluate the evidence for NFAT involvement, point out novel cellular and molecular mechanisms that might regulate this familiar transcription factor, and discuss how NFAT exerts its biological effects. Because the phenotypes of NFAT knockout mice have been reviewed elsewhere (Crabtree and Olson 2002; Horsley and Pavlath 2002), we refer to them only as necessary to illustrate specific points.

1,841 citations

Journal ArticleDOI
TL;DR: Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior.
Abstract: Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.

1,320 citations

Journal ArticleDOI
TL;DR: The potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies are demonstrated.
Abstract: Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.

893 citations

Journal ArticleDOI
29 Jun 2018-eLife
TL;DR: It is shown that arterial is distinctly different from atrioventricular valve formation, and a new source of valve interstitial cells is identified, which provides a novel mechanism for causation of bicuspid aortic valves without raphe.
Abstract: Abnormalities of the arterial valve leaflets, predominantly bicuspid aortic valve, are the commonest congenital malformations. Although many studies have investigated the development of the arterial valves, it has been assumed that, as with the atrioventricular valves, endocardial to mesenchymal transition (EndMT) is the predominant mechanism. We show that arterial is distinctly different from atrioventricular valve formation. Whilst the four septal valve leaflets are dominated by NCC and EndMT-derived cells, the intercalated leaflets differentiate directly from Tnnt2-Cre+/Isl1+ progenitors in the outflow wall, via a Notch-Jag dependent mechanism. Further, when this novel group of progenitors are disrupted, development of the intercalated leaflets is disrupted, resulting in leaflet dysplasia and bicuspid valves without raphe, most commonly affecting the aortic valve. This study thus overturns the dogma that heart valves are formed principally by EndMT, identifies a new source of valve interstitial cells, and provides a novel mechanism for causation of bicuspid aortic valves without raphe.

856 citations

Journal ArticleDOI
TL;DR: The topographical arrangement of the distinct cardiac muscle cells in the forming heart explains the embryonic electrocardiogram (ECG), does not require the invention of nodes, and allows a logical transition from a peristaltic tubular heart to a synchronously contracting four-chambered heart.
Abstract: Concepts of cardiac development have greatly influenced the description of the formation of the four-chambered vertebrate heart. Traditionally, the embryonic tubular heart is considered to be a composite of serially arranged segments representing adult cardiac compartments. Conversion of such a serial arrangement into the parallel arrangement of the mammalian heart is difficult to understand. Logical integration of the development of the cardiac conduction system into the serial concept has remained puzzling as well. Therefore, the current description needed reconsideration, and we decided to evaluate the essentialities of cardiac design, its evolutionary and embryonic development, and the molecular pathways recruited to make the four-chambered mammalian heart. The three principal notions taken into consideration are as follows. 1) Both the ancestor chordate heart and the embryonic tubular heart of higher vertebrates consist of poorly developed and poorly coupled "pacemaker-like" cardiac muscle cells with the highest pacemaker activity at the venous pole, causing unidirectional peristaltic contraction waves. 2) From this heart tube, ventricular chambers differentiate ventrally and atrial chambers dorsally. The developing chambers display high proliferative activity and consist of structurally well-developed and well-coupled muscle cells with low pacemaker activity, which permits fast conduction of the impulse and efficacious contraction. The forming chambers remain flanked by slowly proliferating pacemaker-like myocardium that is temporally prevented from differentiating into chamber myocardium. 3) The trabecular myocardium proliferates slowly, consists of structurally poorly developed, but well-coupled, cells and contributes to the ventricular conduction system. The atrial and ventricular chambers of the formed heart are activated and interconnected by derivatives of embryonic myocardium. The topographical arrangement of the distinct cardiac muscle cells in the forming heart explains the embryonic electrocardiogram (ECG), does not require the invention of nodes, and allows a logical transition from a peristaltic tubular heart to a synchronously contracting four-chambered heart. This view on the development of cardiac design unfolds fascinating possibilities for future research.

683 citations