scispace - formally typeset
Search or ask a question
Author

Magnus Ingelman-Sundberg

Other affiliations: Royal Institute of Technology, Altana, University of Turin  ...read more
Bio: Magnus Ingelman-Sundberg is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Cytochrome P450 & Microsome. The author has an hindex of 101, co-authored 506 publications receiving 38416 citations. Previous affiliations of Magnus Ingelman-Sundberg include Royal Institute of Technology & Altana.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that the pharmacogenetic knowledge regarding CYP polymorphism now developed to a stage where it can be implemented in drug development and in clinical routine for specific drug treatments, thereby improving the drug response and reducing costs for drug treatment.

1,063 citations

Journal ArticleDOI
TL;DR: Predictive CYP2D6 genotyping is estimated by the author to be beneficial for treatment of about 30–40% of CYP 2D6 drug substrates, that is, for about 7–10% of all drugs clinically used, although prospective clinical studies are necessary to evaluate the exact benefit of drug selection and dosage.
Abstract: CYP2D6 is of great importance for the metabolism of clinically used drugs and about 20–25% of those are metabolised by this enzyme. In addition, the enzyme utilises hydroxytryptamines as endogenous substrates. The polymorphism of the enzyme results in poor, intermediate, efficient or ultrarapid metabolisers (UMs) of CYP2D6 drugs. It is plausible that the UM genotype, where more than one active gene on one allele occurs, is the outcome of selective dietary selection in certain populations in North East Africa. The UM phenotype affects 5.5% of the population in Western Europe. A hypothesis for the evolutionary basis behind selection for CYP2D6 gene duplications is presented in relation to selection for Cyp6 variants in insecticide resistant Drosophila strains. The polymorphism of CYP2D6 significantly affects the pharmacokinetics of about 50% of the drugs in clinical use, which are CYP2D6 substrates. The consequences of the polymorphism at ordinary drug doses can be either adverse drug reactions or no drug response. Examples are presented where CYP2D6 polymorphism affects the efficacy and costs of drug treatment. Predictive CYP2D6 genotyping is estimated by the author to be beneficial for treatment of about 30–40% of CYP2D6 drug substrates, that is, for about 7–10% of all drugs clinically used, although prospective clinical studies are necessary to evaluate the exact benefit of drug selection and dosage based on the CYP2D6 genotype.

1,027 citations

Journal ArticleDOI
TL;DR: Several molecular mechanisms whereby n-3 fatty acids may modify the carcinogenic process have been proposed, and influences on transcription factor activity, gene expression, and signal transduction pathways; alteration of estrogen metabolism; increased or decreased production of free radicals and reactive oxygen species; and mechanisms involving insulin sensitivity and membrane fluidity are proposed.

924 citations

Journal Article
TL;DR: Using the International Project on Genetic Susceptibility to Environmental Carcinogens (GSEC) database containing information on over 15,000 control (noncancer) subjects, the allele and genotype frequencies for many of the more commonly studied metabolic genes in the human population were determined.
Abstract: Using the International Project on Genetic Susceptibility to Environmental Carcinogens (GSEC) database containing information on over 15,000 control (noncancer) subjects, the allele and genotype frequencies for many of the more commonly studied metabolic genes (CYP1A1, CYP2E1, CYP2D6, GSTM1, GSTT1, NAT2, GSTP, and EPHX) in the human population were determined. Major and significant differences in these frequencies were observed between Caucasians (n = 12,525), Asians (n = 2,136), and Africans and African Americans (n = 996), and some, but much less, heterogeneity was observed within Caucasian populations from different countries. No differences in allele frequencies were seen by age, sex, or type of controls (hospital patients versus population controls). No examples of linkage disequilibrium between the different loci were detected based on comparison of observed and expected frequencies for combinations of specific alleles.

851 citations

Journal ArticleDOI
TL;DR: Many drugs, including proton pump inhibitors and certain antidepressants, are metabolized by the polymorphic cytochrome P450 (CYP) 2C19 enzyme, and a significant portion of extensive metabolizers do not reach appropriate drug levels.
Abstract: Background and Objective Many drugs, including proton pump inhibitors and certain antidepressants, are metabolized by the polymorphic cytochrome P450 (CYP) 2C19 enzyme. A significant portion of extensive metabolizers do not reach appropriate drug levels, and our objective was to investigate any genetic background. Methods The 5′-flanking region of the CYP2C19 gene from subjects with rapid omeprazole metabolism was sequenced, and CYP2C19 phenotype-genotype associations were analyzed in Swedish (n=107) and Ethiopian (n=126) extensive metabolizers. The relationship of the metabolic ratio of omeprazole (omeprazole/5-hydroxyomeprazole in plasma 3 hours after drug intake) with the area under the plasma concentration-time curve was used for prediction studies. Electrophoretic mobility shift assays were conducted by use of human nuclear protein extracts. Hepatic reporter vector transfections were carried out in CD1 mice. Results We identified a novel allele (CYP2C19*17) carrying −806C>T and −3402C>T, with a frequency of 18% in both Swedes and Ethiopians and 4% in Chinese subjects. In Swedes the metabolic ratio of omeprazole was higher in subjects homozygous for CYP2C19*1 (median, 0.50 [interquartile range, 0.37–0.73]) than in those homozygous for CYP2C19*17 (median, 0.25 [interquartile range, 0.15–0.33]) (P = .010). In Ethiopians a similar difference in the S/R-mephenytoin ratio was observed between individuals homozygous for CYP2C19*1 (median, 0.20 [interquartile range, 0.12–0.37]) and those homozygous for CYP2C19*17 (median, 0.05 [interquartile range, 0.03–0.06]) (P=.013). Electrophoretic mobility shift assays showed specific binding of human hepatic nuclear proteins to an element carrying −806T but not −806C. Reporter vector experiments showed an increased transcriptional activity of the CYP2C19*17 allele in vivo in mice. Predictions revealed that CYP2C19*17 homozygotes would attain 35% to 40% lower omeprazole area under the plasma concentration-time curve values than subjects homozygous for CYP2C19*1 taking standard doses of omeprazole. Conclusion CYP2C19*17 is likely to cause therapeutic failures in drug treatment with, for example, proton pump inhibitors and antidepressants. Clinical Pharmacology & Therapeutics (2006) 79, 103–113; doi: 10.1016/j.clpt.2005.10.002

716 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends thatclinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.

17,834 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Book ChapterDOI
TL;DR: The chapter discusses the metabolism of transition metals, such as iron and copper, and the chelation therapy that is an approach to site-specific antioxidant protection.
Abstract: Publisher Summary This chapter discusses the role of free radicals and catalytic metal ions in human disease. The importance of transition metal ions in mediating oxidant damage naturally leads to the question as to what forms of such ions might be available to catalyze radical reactions in vivo . The chapter discusses the metabolism of transition metals, such as iron and copper. It also discusses the chelation therapy that is an approach to site-specific antioxidant protection. The detection and measurement of lipid peroxidation is the evidence most frequently cited to support the involvement of free radical reactions in toxicology and in human disease. A wide range of techniques is available to measure the rate of this process, but none is applicable to all circumstances. The two most popular are the measurement of diene conjugation and the thiobarbituric acid (TBA) test, but they are both subject to pitfalls, especially when applied to human samples. The chapter also discusses the essential principles of the peroxidation process. When discussing lipid peroxidation, it is essential to use clear terminology for the sequence of events involved; an imprecise use of terms such as initiation has caused considerable confusion in the literature. In a completely peroxide-free lipid system, first chain initiation of a peroxidation sequence in a membrane or polyunsaturated fatty acid refers to the attack of any species that has sufficient reactivity to abstract a hydrogen atom from a methylene group.

5,033 citations

Journal ArticleDOI
18 Jul 1986-Science
TL;DR: A novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to the understanding of cell-to-cell communication.
Abstract: Protein kinase C, an enzyme that is activated by the receptor-mediated hydrolysis of inositol phospholipids, relays information in the form of a variety of extracellular signals across the membrane to regulate many Ca2+-dependent processes. At an early phase of cellular responses, the enzyme appears to have a dual effect, providing positive forward as well as negative feedback controls over various steps of its own and other signaling pathways, such as the receptors that are coupled to inositol phospholipid hydrolysis and those of some growth factors. In biological systems, a positive signal is frequently followed by immediate negative feedback regulation. Such a novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to our understanding of cell-to-cell communication.

5,006 citations

Journal ArticleDOI
TL;DR: This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years and significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions.
Abstract: DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year's update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.

4,797 citations