scispace - formally typeset
Search or ask a question
Author

Magnus Karlsson

Bio: Magnus Karlsson is an academic researcher from Linköping University. The author has contributed to research in topics: Efficient energy use & Energy management. The author has an hindex of 23, co-authored 110 publications receiving 1455 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model comprising a pulp mill, a sawmill, a district heating network and a biofuel upgrading plant is used to demonstrate how the MIND method, an optimization method based on mixed integer linear programming, can be used to evaluate industrial symbiosis in the forest industry.
Abstract: In this work, a model comprising a pulp mill, a sawmill, a district heating network and a biofuel upgrading plant is used to demonstrate how the MIND method, an optimization method based on mixed integer linear programming, can be used to evaluate industrial symbiosis in the forest industry. Using this method, both energy and material flows on both the supply and the demand side can be studied simultaneously. The method can be used to find improvements in the structure of the modelled system, to find the optimal operational strategy of a given system, and to evaluate and compare different systems. The total system costs for stand-alone cases and integrated industrial symbiosis system configuration are compared, generating results that can be used as decision support when planning industrial symbiosis initiatives in the forest industry. The results of this study showed that there are financial benefits to industrial symbiosis compared to the same system operated in stand-alone mode, and that the industrial symbiosis configuration generates a more stable system. However, it is difficult to generalize the results from a case study, and the main conclusion drawn is that it is possible to show that industrial symbiosis has economical benefits, although the magnitude of these benefits needs to be evaluated from case to case.

120 citations

Journal ArticleDOI
TL;DR: The MIND method as discussed by the authors is a flexible method constructed as decision support for different types of analyses of industrial energy systems, which is based on Mixed Integer Linear Programming (MILP) and developed at Linkoping University in Sweden.
Abstract: Changes in complex industrial energy systems require adequate tools to be evaluated satisfactorily. The MIND method (Method for analysis of INDustrial energy systems) is a flexible method constructed as decision support for different types of analyses of industrial energy systems. It is based on Mixed Integer Linear Programming (MILP) and developed at Linkoping University in Sweden. Several industries, ranging from the food industry to the pulp and paper industry, have hitherto been modelled and analyzed using the MIND method. In this paper the principles regarding the use of the method and the creation of constraints of the modelled system are presented. Two case studies are also included, a dairy and a pulp and paper mill, that focus some measures that can be evaluated using the MIND method, e.g. load shaping, fuel conversion and introduction of energy efficiency measures. The case studies illustrate the use of the method and its strengths and weaknesses. The results from the case studies are related to the main issues stated by the European Commission, such as reduction of greenhouse gas emissions, improvements regarding security of supply and increased use of renewable energy, and show great potential as regards both cost reductions and possible load shifting.

104 citations

Journal ArticleDOI
TL;DR: Swedish industry, which has one of the lowest electricity prices in the European Union, will face higher electricity prices due to the Union’s electricity market liberalization.
Abstract: Swedish industry, which has one of the lowest electricity prices in the European Union, will face higher electricity prices due to the Union’s electricity market liberalization. Rising electricity ...

90 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore whether investment decision support practices may be used successfully towards small and medium-sized manufacturers in Sweden when complex production-related investment decisions are taken, and the optimization results from the different cases, involving a foundry's investment in a new melting unit, indicate that with no electricity price fluctuations over the day, the investment seems sound as it lowers the overall energy costs.
Abstract: Due to increased globalisation, industries are facing greater competition that is pressing companies into decreasing their expenses in order to increase their profits. As regards Swedish industry, it has been faced with substantial increases in energy prices in recent years. Barriers to energy efficiency such as imperfect information inhibit investments in energy efficiency measures, energy audits being one means of reducing barriers and overcoming imperfect information. However, an evaluation of such energy audits in Sweden reveals that it is chiefly low-cost measures that are undertaken as a result of an audit. Moreover, these audits often tend to focus on support processes such as ventilation, lighting, air compressors etc., while measures impacting production processes are often not as extensively covered, which underlines the need for further support in addition to energy audits. Decision support is practised in a variety of different disciplines such as optimization and simulation and the aim of this paper is to explore whether investment decision support practices may be used successfully towards small and medium-sized manufacturers in Sweden when complex production-related investment decisions are taken. The optimization results from the different cases, involving a foundry’s investment in a new melting unit, indicate that with no electricity price fluctuations over the day, the investment seems sound as it lowers the overall energy costs. However, with fluctuating electricity prices, there are no large differences in energy costs between the option of retaining the existing five melting furnaces at the foundry and investing in a twin furnace and removing the holding furnaces – which was the initial investment plan for the foundry in the study. It would not have been possible to achieve this outcome without the use of investment decision support such as MIND. One of the main conclusions in this paper is that investment decision support, when strategic investment decisions are to be taken, may be a means of emphasising energy efficiency for energy-intensive SMEs beyond the level of traditional energy auditing.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a Swedish wood-pulp mill is surveyed in terms of energy supply and use in order to determine the energy-saving potential of the mill, and conservation measures are of increasing interest to Swedish industry.
Abstract: A Swedish wood-pulp mill is surveyed in terms of energy supply and use in order to determine the energy-saving potential. Conservation measures are of increasing interest to Swedish industry, as en ...

72 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Journal ArticleDOI
01 Feb 2014-Energy
TL;DR: In this paper, the authors provide a comprehensive and critical overview of the latest models and assessment techniques that are currently available to analyze MES and in particular DMG systems, including for instance energy hubs, microgrids, and VPPs (virtual power plants), as well as various approaches and criteria for energy, environmental, and technoeconomic assessment.
Abstract: MES (multi-energy systems) whereby electricity, heat, cooling, fuels, transport, and so on optimally interact with each other at various levels (for instance, within a district, city or region) represent an important opportunity to increase technical, economic and environmental performance relative to “classical” energy systems whose sectors are treated “separately” or “independently”. This performance improvement can take place at both the operational and the planning stage. While such systems and in particular systems with distributed generation of multiple energy vectors (DMG (distributed multi-generation)) can be a key option to decarbonize the energy sector, the approaches needed to model and relevant tools to analyze them are often of great complexity. Likewise, it is not straightforward to identify performance metrics that are capable to properly capture costs and benefits that are relating to various types of MES according to different criteria. The aim of this invited paper is thus to provide the reader with a comprehensive and critical overview of the latest models and assessment techniques that are currently available to analyze MES and in particular DMG systems, including for instance concepts such as energy hubs, microgrids, and VPPs (virtual power plants), as well as various approaches and criteria for energy, environmental, and techno-economic assessment.

1,060 citations

Journal Article
TL;DR: A review of the turn of events and points of view of biogas in and its utilization for power, heat and in transport in the European Union (EU) and its Member States is presented in this article.
Abstract: This paper presents a review of the turn of events and points of view of biogas in and its utilization for power, heat and in transport in the European Union (EU) and its Member States. Biogas creation has expanded in the EU, empowered by the sustainable power strategies, notwithstanding monetary, ecological and atmosphere benefits, to arrive at 18 billion m3 methane (654 PJ) in 2015, speaking to half of the worldwide biogas creation. The EU is the world chief in biogas power creation, with more than 10 GW introduced and various 17,400 biogas plants, in contrast with the worldwide biogas limit of 15 GW in 2015. In the EU, biogas conveyed 127 TJ of warmth and 61 TWh of power in 2015; about half of absolute biogas utilization in Europe was bound to warm age. Europe is the world's driving maker of biomethane for the utilization as a vehicle fuel or for infusion into the petroleum gas network, with 459 plants in 2015 creating 1.2 billion m3 and 340 plants taking care of into the gas network, with a limit of 1.5 million m3. Around 697 biomethane filling stations guaranteed the utilization 160 million m3 of biomethane as a transport fuel in 2015.

703 citations

Journal ArticleDOI
TL;DR: It is concluded that this technology has significant under-researched potential to support and enhance the efficiency gains of the revolution and identifies areas for future research.
Abstract: The purpose of this paper is to explore applications of blockchain technology related to the 4th Industrial Revolution (Industry 4.0) and to present an example where blockchain is employed to facilitate machine-to-machine (M2M) interactions and establish a M2M electricity market in the context of the chemical industry. The presented scenario includes two electricity producers and one electricity consumer trading with each other over a blockchain. All participants are supplied with realistic data produced by process flow sheet models. This work contributes a proof-of-concept implementation of the scenario. Additionally, this paper describes and discusses the research and application landscape of blockchain technology in relation to the Industry 4.0. It concludes that this technology has significant under-researched potential to support and enhance the efficiency gains of the revolution and identifies areas for future research.

576 citations