scispace - formally typeset
Search or ask a question
Author

Magnús M. Halldórsson

Bio: Magnús M. Halldórsson is an academic researcher from Reykjavík University. The author has contributed to research in topics: Approximation algorithm & Independent set. The author has an hindex of 48, co-authored 281 publications receiving 7830 citations. Previous affiliations of Magnús M. Halldórsson include Japan Advanced Institute of Science and Technology & University of Bergen.


Papers
More filters
Journal ArticleDOI
TL;DR: An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known toO(n/(logn)2), and the results can be combined into a surprisingly strong simultaneous performance guarantee for the clique and coloring problems.
Abstract: An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known toO(n/(logn)2). We also obtain the same performance guarantee for graph coloring. The results can be combined into a surprisingly strongsimultaneous performance guarantee for the clique and coloring problems. The framework ofsubgraph-excluding algorithms is presented. We survey the known approximation algorithms for the independent set (clique), coloring, and vertex cover problems and show how almost all fit into that framework. We show that among subgraph-excluding algorithms, the ones presented achieve the optimal asymptotic performance guarantees.

337 citations

Proceedings ArticleDOI
19 Apr 2009
TL;DR: This work proposes the first scheduling algorithm with approximation guarantee independent of the topology of the network, and proves that the analysis of the algorithm is extendable to higher-dimensional Euclidean spaces, and to more realistic bounded-distortion spaces, induced by non-isotropic signal distortions.
Abstract: In this work we study the problem of determining the throughput capacity of a wireless network. We propose a scheduling algorithm to achieve this capacity within an approximation factor. Our analysis is performed in the physical interference model, where nodes are arbitrarily distributed in Euclidean space. We consider the problem separately from the routing problem and the power control problem, i.e., all requests are single-hop, and all nodes transmit at a fixed power level. The existing solutions to this problem have either concentrated on special-case topologies, or presented optimality guarantees which become arbitrarily bad (linear in the number of nodes) depending on the network's topology. We propose the first scheduling algorithm with approximation guarantee independent of the topology of the network. The algorithm has a constant approximation guarantee for the problem of maximizing the number of links scheduled in one time-slot. Furthermore, we obtain a O(log n) approximation for the problem of minimizing the number of time slots needed to schedule a given set of requests. Simulation results indicate that our algorithm does not only have an exponentially better approximation ratio in theory, but also achieves superior performance in various practical network scenarios. Furthermore, we prove that the analysis of the algorithm is extendable to higher-dimensional Euclidean spaces, and to more realistic bounded-distortion spaces, induced by non-isotropic signal distortions. Finally, we show that it is NP-hard to approximate the scheduling problem to within n 1-epsiv factor, for any constant epsiv > 0, in the non-geometric SINR model, in which path-loss is independent of the Euclidean coordinates of the nodes.

296 citations

Journal Article
TL;DR: In this paper, the authors show that the minimum degree greedy algorithm achieves a performance ratio of (Δ+2)/3 for approximating independent sets in graphs with degree bounded by Δ.
Abstract: Theminimum-degree greedy algorithm, or Greedy for short, is a simple and well-studied method for finding independent sets in graphs. We show that it achieves a performance ratio of (Δ+2)/3 for approximating independent sets in graphs with degree bounded by Δ. The analysis yields a precise characterization of the size of the independent sets found by the algorithm as a function of the independence number, as well as a generalization of Turan's bound. We also analyze the algorithm when run in combination with a known preprocessing technique, and obtain an improved $$(2\bar d + 3)/5$$ performance ratio on graphs with average degree $$\bar d$$ , improving on the previous best $$(\bar d + 1)/2$$ of Hochbaum. Finally, we present an efficient parallel and distributed algorithm attaining the performance guarantees of Greedy.

235 citations

Journal ArticleDOI
TL;DR: The minimum-degree greedy algorithm is shown to achieve a performance ratio of (Δ+2)/3 for approximating independent sets in graphs with degree bounded by Δ, and a precise characterization of the size of the independent sets found by the algorithm as a function of the independence number is found.
Abstract: Theminimum-degree greedy algorithm, or Greedy for short, is a simple and well-studied method for finding independent sets in graphs. We show that it achieves a performance ratio of (Δ+2)/3 for approximating independent sets in graphs with degree bounded by Δ. The analysis yields a precise characterization of the size of the independent sets found by the algorithm as a function of the independence number, as well as a generalization of Turan's bound. We also analyze the algorithm when run in combination with a known preprocessing technique, and obtain an improved $$(2\bar d + 3)/5$$ performance ratio on graphs with average degree $$\bar d$$ , improving on the previous best $$(\bar d + 1)/2$$ of Hochbaum. Finally, we present an efficient parallel and distributed algorithm attaining the performance guarantees of Greedy.

234 citations

Book ChapterDOI
01 Jul 1990
TL;DR: An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known to n/(log n)2, and this can be combined into a surprisingly strong simultaneous performance guarantee for the clique and coloring problems.
Abstract: An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known to \({\cal O}\)(n/(log n)2). We also obtain the same performance guarantee for graph coloring. The results can be combined into a surprisingly strong simultaneous performance guarantee for the clique and coloring problems.

213 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is proved that (1 - o(1) ln n setcover is a threshold below which setcover cannot be approximated efficiently, unless NP has slightlysuperpolynomial time algorithms.
Abstract: Given a collection ℱ of subsets of S = {1,…,n}, set cover is the problem of selecting as few as possible subsets from ℱ such that their union covers S,, and max k-cover is the problem of selecting k subsets from ℱ such that their union has maximum cardinality. Both these problems are NP-hard. We prove that (1 - o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low-order terms) between the ratio of approximation achievable by the greedy alogorithm (which is (1 - o(1)) ln n), and provious results of Lund and Yanakakis, that showed hardness of approximation within a ratio of (log2n) / 2 ≃0.72 ln n. For max k-cover, we show an approximation threshold of (1 - 1/e)(up to low-order terms), under assumption that P ≠ NP.

2,941 citations

Journal ArticleDOI
TL;DR: An overview of challenges and recent developments in both technological and regulatory aspects of opportunistic spectrum access (OSA) is presented, and the three basic components of OSA are discussed.
Abstract: Compounding the confusion is the use of the broad term cognitive radio as a synonym for dynamic spectrum access. As an initial attempt at unifying the terminology, the taxonomy of dynamic spectrum access is provided. In this article, an overview of challenges and recent developments in both technological and regulatory aspects of opportunistic spectrum access (OSA). The three basic components of OSA are discussed. Spectrum opportunity identification is crucial to OSA in order to achieve nonintrusive communication. The basic functions of the opportunity identification module are identified

2,819 citations

Journal ArticleDOI
TL;DR: Barwise and Perry as discussed by the authors tackle the slippery subject of ''meaning, '' a subject that has long vexed linguists, language philosophers, and logicians, and they tackle it in this book.
Abstract: In this provocative book, Barwise and Perry tackle the slippery subject of \"meaning, \" a subject that has long vexed linguists, language philosophers, and logicians.

1,834 citations

Journal ArticleDOI
TL;DR: The objectives of BIOS 781 are to present basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination, and methods for genome-wide association and stratification control.
Abstract: LEARNING The objectives of BIOS 781 are to present: OBJECTIVES: 1. basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination 2. an exposure to QTL mapping methods of complex quantitative traits and linkage methods to detect co-segregation with disease 3. methods for assessing marker-disease linkage disequilibrium, including case-control approaches 4. methods for genome-wide association and stratification control.

1,516 citations