scispace - formally typeset
Search or ask a question

Showing papers by "Mahdi Aliyari Shoorehdeli published in 2015"


Proceedings ArticleDOI
01 Oct 2015
TL;DR: In this article, the authors presented fault detection of a heavy duty V94.2 gas turbine which has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Pareh Sar power plant, Gilan, Iran.
Abstract: This study presents fault detection of a heavy duty V94.2 gas turbine which has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Pareh Sar power plant, Gilan, Iran. For this purpose stored data include measurements of relative and absolute vibration of shaft bearings in both turbine and compressor sections. Signal processing techniques and mathematical transformations are used for feature extraction, as well as supervised and unsupervised methods for dimensionality reduction. Finally neural networks are employed for classification task and fault detection results for different methods are compared and discussed. Proposed techniques show zero FAR and MAR, when PNN is used with PCA or when MLP or RBF is used with LDA for dimensionality reduction.

10 citations


Journal ArticleDOI
TL;DR: To handle the existing uncertainty of satellite image pixel values, using type-2 fuzzy set theory in combination with object-based image analysis is proposed, and a hybrid genetic algorithm consisting of Pittsburgh and cooperative-competitive learning schemes is proposed to address these problems.
Abstract: The growing availability of high-resolution satellite imagery provides an opportunity for identifying road objects. Most studies associated with road detection are scene-related and also based on the digital number of each pixel. Because images can provide more details (including color, size, shape, and texture), object-based processing is more advantageous. Therefore, in this paper, to handle the existing uncertainty of satellite image pixel values, using type-2 fuzzy set theory in combination with object-based image analysis is proposed. Because the main challenges of the type-2 fuzzy set are parameter tuning and extensive computations, a hybrid genetic algorithm (GA) consisting of Pittsburgh and cooperative-competitive learning schemes is proposed to address these problems. The most prominent feature of our research in this work is to establish a comprehensive object-based type-2 fuzzy logic system that enables us to detect roads in high-resolution satellite images with no training data. The validation assessment of road detection results using the proposed framework for independent images demonstrates the capability and efficiency of our method in identifying road objects. For more evaluation, a type-1 fuzzy logic system with the same structure as type-2 is tuned. Evaluations show that type-1 fuzzy logic system quality in training is very similar to that of the proposed type-2 fuzzy framework. However, in general, its lower accuracy, as inferred by validation assessments, makes the type-1 fuzzy logic system significantly different from the proposed type-2.

10 citations


Journal ArticleDOI
TL;DR: A novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances to investigate the stability of the nonlinear dynamic systems.
Abstract: In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems.

9 citations


Proceedings ArticleDOI
23 May 2015
TL;DR: In this paper, a new strategy for fault detection and isolation is presented, which is based on the design of a Luneburg observer which is implemented via pole placement using linear matrix inequalities.
Abstract: In this study, a new strategy for fault detection and isolation is presented. This strategy is based on the design of a Luneburg observer which is implemented via pole placement using linear matrix inequalities. Two residuals are formulated based on the state estimation error in order to be utilized in detecting and isolating faults happened on the system. Fault detection problem solves by changes occur in the residual value and fault isolation is done through determining threshold on residuals according to system behavior in faulty condition. The procedure performs in four simulations steps in which there are certain numbers of faults happen in the system in each step. This method is validated in simulation on a quadruple tank process while each faulty condition is considered as a leak at the bottom of a tank in the process. This can lead to an undesirable flow of liquid out of the tank which results to a decrease in tank's level. The simulation results represented in the paper shows the applicability of this strategy.

1 citations