scispace - formally typeset
Search or ask a question
Author

Mahen Konwar

Other affiliations: Jadavpur University
Bio: Mahen Konwar is an academic researcher from Indian Institute of Tropical Meteorology. The author has contributed to research in topics: Precipitation & Aerosol. The author has an hindex of 15, co-authored 48 publications receiving 913 citations. Previous affiliations of Mahen Konwar include Jadavpur University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the microphysical structure of deep convective clouds using in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) over the Indian peninsular region is presented.
Abstract: Analysis of the microphysical structure of deep convective clouds using in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) over the Indian peninsular region is presented. It is shown that droplet size distributions (DSDs) in highly polluted premonsoon clouds are substantially narrower than DSDs in less polluted monsoon clouds. High values of DSD dispersion (0.3–0.6) and its vertical variation in the transient and monsoon clouds are related largely to the existence of small cloud droplets with diameters less than 10 μm, which were found at nearly all levels. This finding indicates the existence of a continuous generation of the smallest droplets at different heights. In some cases this generation of small droplets leads to the formation of bimodal and even multimodal DSDs. The formation of bimodal DSDs is especially pronounced in monsoon clouds. Observational evidence is presented to suggest that in-cloud nucleation at elevated layers is a f...

128 citations

10 Feb 2012
TL;DR: A national experiment named Cloud Aerosol Interaction and Precipitation Enhancement Enhancement EXperiment (CAIPEEX) in two phases, was carried out by the Indian National Experiment for Atmospheric and Environmental Sciences (INSEPSS) as mentioned in this paper.
Abstract: While the demand for enhancing rainfall through cloud seeding is strong and persistent in the country, considerable uncertainty exists on the success of such an endeavour at a given location To understand the pathways of aerosol-cloud interaction through which this might be achieved, a national experiment named Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) in two phases, was carried out The rationale of CAIPEEX, the strategy for conducting the experiment, data quality and potential for path-breaking science are described in this article Pending completion of quality control and calibration of the CAIPEEX phase-II data, here we present some initial results of CAIPEEX phase-I aimed at documenting the prevailing microphysical characteristics of aerosols and clouds and associated environmental conditions over different regions of the country and under different monsoon conditions with the help of an instrumented research aircraft First-time simultaneous observations of aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentration (CDNC) over the Ganges Valley during monsoon season show very high concentrations (> 1000 cm-3) of CCN at elevated layers Observations of elevated layers with high aerosol concentration over the Gangetic valley extending up to 6 km and relatively less aerosol concentration in the boundary layer are also documented We also present evidence of strong cloud- aerosol interaction in the moist environments with an increase in the cloud droplet effective radius Our observations also show that pollution increases CDNC and the warm rain depth, and delays its initiation The critical effective radius for warm rain initiation is found to be between 10 and 12 I¼m in the polluted clouds and it is between 12 and 14 I¼m in cleaner monsoon clouds

124 citations

Journal ArticleDOI
TL;DR: Aircraft measurements of cloud condensation nuclei and microphysics of clouds at various altitudes were conducted over India during CAIPEEX (Cloud Aerosol Interaction and Precipitation Enhancement Experiment) phase I and II in 2009 and 2010 respectively.
Abstract: [1] Aircraft measurements of cloud condensation nuclei (CCN) and microphysics of clouds at various altitudes were conducted over India during CAIPEEX (Cloud Aerosol Interaction and Precipitation Enhancement Experiment) phase I and II in 2009 and 2010 respectively. As expected, greater CCN concentrations gave rise to clouds with smaller drops with greater number concentrations (Nc). The cloud drop effective radius (re) increased with distance above cloud base (D). Warm rain became detectable, i.e., rain water content >0.01 g/Kg, at the tops of growing convective clouds when re exceeded 12 μm. The re is determined by the number of activated CCN, Nad, and D. The Nad can be approximated by the maximum measured values of Nc. Higher Nc resulted in greater D for reaching the re threshold for onset of warm rain, re*, denoted as D*. In extreme cases of highly polluted and moist air that formed the monsoon clouds over the Indo-Gangetic plains, D* exceeded 6 km, well above the 0°C isotherm level. The precipitation particles were initiated there as supercooled raindrops at a temperature of −8°C. Giant CCN reduced re* and D*, by initiating raindrops closer to cloud base. This effect was found mainly in dusty air masses over the Arabian Sea. Besides, the aerosol effect on D*, D* was found to decrease with increase in cloud water path.

114 citations

Journal ArticleDOI
TL;DR: In this article, the rain and cloud microphysical parameters are presented from two stations, Pune and Mahabaleshwar, one each on the lee and windward sides, respectively of the Western Ghat (WG) mountains in peninsular India.
Abstract: In an attempt to unravel the interactions between cloud microphysics and dynamics that make shallow clouds precipitate heavily in this region, some unique observations of rain and cloud microphysical parameters are presented here from two stations, Pune and Mahabaleshwar, one each on the lee and windward sides, respectively, of the Western Ghat (WG) mountains in peninsular India. To elucidate rain microphysics, we used the raindrop size distribution (DSD) by fitting three parameter Gamma functions to the observed raindrop spectra. Over Pune, during stratiform rain with bright band (BB) at 0°C isotherm; concave upward DSD shapes are observed below the BB which becomes concave downward at lower altitudes. It is due to breakup process of large raindrops which increases drop concentration at midsizes suggesting coalescence, collision, and breakup processes. Both slope and intercept parameters of Gamma DSD decrease during no BB condition as altitudes decrease, signifying collision and coalescence processes. Over Mahabaleshwar, bimodal and monomodal DSD are observed during light and heavy rainfall, respectively. With shallow storm heights, small raindrops mainly contribute to both types of rainfall. The DSDs are parameterized, and their radar reflectivity factor-rainfall intensity relationships are evaluated suggesting the dominance of collision-coalescence processes. Aircraft measurements of orographic clouds over the WG suggest interaction of cloud mass with the ambient updraft speed. The orographically forced updrafts foster rapid condensational growth of cloud droplets triggering coalescence process within few hundred meters of cloud depth. Hence, these clouds are dynamically forced to produce precipitation over the WG.

99 citations

Journal ArticleDOI
TL;DR: The Winter Fog Experiment (WIFEX) over the Indo-Gangetic Plains of India is to develop better nowcasting and forecasting of winter fog on various time and spatial scales as discussed by the authors.
Abstract: The objectives of the Winter Fog Experiment (WIFEX) over the Indo-Gangetic Plains of India are to develop better now-casting and forecasting of winter fog on various time-and spatial scales. Maximum fog occurrence over northwest India is about 48 days (visibility <1000 m) per year, and it occurs mostly during the December-February time-period. The physical and chemical characteristics of fog, meteorological factors responsible for its genesis, sustenance, intensity and dissipation are poorly understood. Improved understanding on the above aspects is required to develop reliable forecasting models and observational techniques for accurate prediction of the fog events. Extensive sets of comprehensive ground-based instrumentation were deployed at the Indira Gandhi International Airport, New Delhi. Major in situ sensors were deployed to measure surface micrometeorological conditions, radiation balance, turbulence, thermodynamical structure of the surface layer, fog droplet and aerosol microphysics, aerosol optical properties, and aerosol and fog water chemistry to describe the complete environmental conditions under which fog develops. In addition, Weather Forecasting Model coupled with chemistry is planned for fog prediction at a spatial resolution of 2 km. The present study provides an introductory overview of the winter fog field campaign with its unique instrumentation.

86 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: A comprehensive review of studies on Asian aerosols, monsoons, and their interactions is provided in this article, where a new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosolmonsoon climate system, subject to external forcing of global warming, anthropogenic aerosol, and land use and change.
Abstract: The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

585 citations

Journal ArticleDOI
TL;DR: Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM.
Abstract: Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs red...

334 citations

01 Dec 2009
TL;DR: In this paper, a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN) was investigated.
Abstract: [1] This study was part of the international field measurement Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006). We investigated a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN). During the 1-month observation, particle nucleation followed by significant particle growth on a regional scale was observed frequently (~30%), and we chose 23 August 2006 as a representative case study. Secondary aerosol mass was produced continuously, with sulfate, ammonium, and organics as major components. The aerosol mass growth rate was on average 19 μg m -3 h -1 during the late hours of the day. This growth rate was observed several times during the 1-month intensive measurements. The nucleation mode grew very quickly into the size range of CCN, and the CCN size distribution was dominated by the growing nucleation mode (up to 80% of the total CCN number concentration) and not as usual by the accumulation mode. At water vapor supersaturations of 0.07-0.86%, the CCN number concentrations reached maximum values of 4000-19,000 cm -3 only 6-14 h after the nucleation event. During particle formation and growth, the effective hygroscopicity parameter κ increased from about 0.1-0.3 to 0.35-0.5 for particles with diameters of 40-90 nm, but it remained nearly constant at ~0.45 for particles with diameters of ~190 nm. This result is consistent with aerosol chemical composition data, showing a pronounced increase of sulfate.

324 citations